14. Solonnikov, V.A., A priori estimates for the second order parabolic equations. Tr. Mat. Inst. im. V.A. Steklova, Vol. 70, 1964.

Translated by L.K.

ON THE KINEMATICS, NONEQUILIBRIUM THERMODYNAMICS, AND RHEOLOGICAL RELATIONSHIPS IN THE NONLINEAR THEORY OF VISCOELASTICITY

PMM Vol. 32, No. 1, 1968, pp. 70-94

V.A. GORODTSOV and A.I. LEONOV
(Moscow)
(Recelved August 6, 1967)
Within the scope of the customary thermodynamics of irreversible processes (TIP) (a linear connection between thermodynamic fluxes and forces, symmetry of the kinetic coefficients), and utilizing the relationship derived herein between reversible, irreversible, and total strain rates, a system of governing equations is constructed for the simplest viscoelastic media in the presence of arbitrary finite reversible deformations.

These equations are investigated in the case of sufficiently small reversible deformations; a "second-order" theory is constructed taking into account the physical as well as the geometrical, nonlinearity in the system. It is hence taken into account that the kinetic coefficients will be tensor functions of the tensor of reversible deformations. This latter leads to "deformation anisotropy" of the heat conduction and diffusion. Expressions are written down for entropy production in the system for the simplest model media.

The "second-order" theory is extended to the case of isothermal deformation of viscoelastic media with many relaxation times. The solution of a number of problems for the simplest flows (simple shear, tension) of viscoelastic media showed a good enough qualitative agreement between the constructed theory and experiment. Also questions about the inversion of the Jaumann tensor derivative ("Jaumann integration") are considered.

A large quantity of papers (see the survey [I]) is devoted to a theoretical description of viscoelastic media. In the phenomenological construction of a theory of viscoelasticity, as in the construction of continuum models generally [2 and 3], invariance considerations, the geometry of finite deformations, and thermodynamics are utilized, while the thermodynamics of irreversible processes (TIP) is used for dissipative media. Biot [4 and 5] made a sufficiently complete investigation of linear viscoelasticity under conditions of small velocities of this kind.

Let us refer to the work of Kluitenberg in which the thermodynamic derivation of governing equations for various media is expounded [6 to 9].

Among the earliest investigations on the nonlinear theory of viscoelasticity is the paper [10]; however, the kinematics of viscoelastic phenomena remained unclarified in this work, and there is a total absence of a themodynamic analysis of the phenomena.

The development of a theory of nonlinear behavior of dissipative media is often connected with the extension of TIP [11]. In opposition to such a viewpoint, an attempt is made herein to utilize the customary version of TIP with linear phenomenological laws and Onsager reciprocity relationships, to derive the governing equations of a nonlinear viscoelastic medium with physical and geometric nonlinearities.

We shall often rely on [2 and 12] without detailed referral in expounding the theory of do-
formation of dissipative media and TIP.
It is known that assigument of a state function of internal-energy or entropy types (or of other thermodynamic potentials), which depend on the temperature and external-parameters, is fundamental for the thermodynamical equilibrium processes. For small deviations from equilibrium ("slightly dissipative" media) it is possible to assume conservation of such a description with the aid of the state function.

First, it is generally necessary to increase the quantity of governing parameters (for example, to include some internal parameters among the arguments of the state function); secondly, it is necessary to give, in addition, the dissipative function which describes entropy production in a thermodynamic syatem.

The specific internal energy is aelected as the state function; and it is assumed that it depends only on the specific entropy s and the reversible part of the deformation $e_{i j}{ }^{\bullet}$ without additional internal parameters, i.e., the dependence $u(s, 8)$ is similar to that which holds in a nondissipative elastic medium. Only the lowest terms in the deviation from equilibrium are kept in the expression for the dissipation.

Such a thermodynamic consideration of a viscoelastic medium has analogy with the statistical approach to its hydrodynamics, when the description using a local equilibrium distribution is selected as the original distribution, and relaxation processes are taken into account as small deviations from this equilibrium distribution [13]. Let us note that the assumptions made essentially differentiate the viscoelastic medium under consideration from a medium with plastic deformations since the characteristic peculiarity of this latter is the dependence of the internal energy on at least the irreversible component of the deformation as well [6 and 9].

1. Kinematics of finite deformations in a viscoelastic medium.

 Following [2], let us determine the reversible deformation in a medium particle by using some imagined, or actually producible process of unloading from stresses of a small particle.Let us define the unloading process of the given particle of the medium as its being released instantaneously from stresses and waiting during an infinite time interval. If the total deformation in a particle is $\varepsilon_{i j}\left(t_{0}\right)$ at time t_{0}, then at $t_{0}+0$ it changes by an "instantaneous" elastic component, and furthermore, for $t>t_{0}$ it will be released from "delayed" elastic deformation, so that only one irreversible deformation component $\varepsilon_{i j}{ }^{p}$ remains in the particle as $t \rightarrow \infty$. The difference $\varepsilon_{i j}{ }^{p}-\varepsilon_{i j}=\varepsilon_{i j}{ }^{e}$ defines the reversible component of the deformation. The quantity $\varepsilon_{i j}$ is determined experimentally in precisely this fashion (with the sole exception that the test lasts a finite time).

Let us introduce a Lagrangean "frozen" coordinate system $\xi^{1}, \xi^{2}, \xi^{3}$ and let us consider three positions of the continuum relative to a fixed x^{1}, x^{2}, x^{3} coordinate system with the vector basis \mathcal{Y}^{i} and the fundamental form

$$
d s^{2}=g_{i j} d x^{i} d x^{j}
$$

1) The initial position at time $t_{0}<t$ with basis $\exists_{0}{ }^{i}$, fundamental form $d x_{0}{ }^{2}=g_{i j}{ }^{(0)} d \xi^{i}$ $d \xi ;$
2) The deformed state at time t with basis $\boldsymbol{G}_{1}{ }^{i}$, fundamental form $d s_{1}{ }^{2}=g_{i j}{ }^{(1)}\left(\xi^{k} ; t\right)$ $d \xi^{i} d \xi^{\prime} ;$
3) The "unloading", state at time $t+\infty$ with basis $\exists_{2}{ }^{i}$ and fundamental form $d s_{2}{ }^{2}=$ $=g_{t j}{ }^{(2)}\left(\xi^{k}, t+\infty\right) d \xi^{\prime} d \xi^{\prime}$.

According to the terms of the introduction of the Lagrange basis $\boldsymbol{Э}_{1}{ }^{i}$ we have $d s^{2}=d s_{1}{ }^{2}$ by virtue of the continum motion $x^{\boldsymbol{d}}=\boldsymbol{x}^{\boldsymbol{t}}(\xi, t)$.

The reversible, irreversible and total components of the deformation are

$$
\begin{equation*}
\varepsilon_{i j}^{e}=1 / 2\left(g_{i j}^{(1)}-g_{i j}^{(2)}\right), \quad e_{i j}^{p}=1 / 2\left(g_{i j}^{(2)}-g_{i j}^{(0)}\right), \quad e_{i j}=1 / 2\left(g_{i j}^{(1)}-g_{i j}^{(0)}\right) \tag{1.1}
\end{equation*}
$$

The space 2 is a space of final states for irreversible deformation, and a space of initial states for reversible deformation; the space 1 is a space of final states for reversible, as well as for the total components of the deformation. Let us introduce the tensore of reveraible $\varepsilon^{\boldsymbol{e}}$, irreversible ε^{p}, and total ' \mathcal{E} deformation

$$
\varepsilon=\varepsilon_{i j} \exists_{1}{ }^{i} Э_{1}{ }^{j}, \quad \varepsilon^{e}=\varepsilon_{i j}{ }^{\bullet} Э_{1}{ }^{i} Э_{1}{ }^{j}, \quad \varepsilon^{p}=\varepsilon_{i j}{ }^{p} \partial_{2}{ }^{i} Э_{2}{ }^{j}
$$

for the various deformation components in the spaces of final states.
Here $\varepsilon_{i j}\left(\xi^{k}, t\right), \varepsilon_{i j}^{e}\left(\xi^{k}, t\right), \varepsilon_{i j}^{p}\left(\xi^{k}, t\right)$ are defined by (1.1). On the basis of (1.1), for the components of these tensors defined in different spaces we will have the componentwise (matrix) equality

$$
\begin{equation*}
\varepsilon_{i j}{ }^{\varepsilon}+\varepsilon_{i j} p=\varepsilon_{i j} \tag{1.2}
\end{equation*}
$$

Let us apply the operation of "convective differentiation" in the time $D / D t$ for the constant Lagrange coordinates ξ^{k} to (1.2)

$$
\begin{equation*}
\frac{D \varepsilon_{i j}{ }^{e}}{D t}+\frac{D \varepsilon_{i j}{ }^{p}}{D t}=\frac{D \varepsilon_{i j}}{D t}=e_{i j} \tag{1.3}
\end{equation*}
$$

Let us define the strain rate tensors in the final states

$$
\begin{equation*}
\mathrm{e}=e_{i j} Э_{1}{ }^{i} Э_{1}{ }^{j}, \quad \frac{D \varepsilon^{e}}{D t}=\frac{D \varepsilon_{i j}{ }^{e}}{\bar{D} t} \ni_{1}{ }^{i} Э_{1}{ }^{j}, \quad \frac{D \varepsilon^{p}}{D t}=\frac{D \varepsilon_{i j}{ }^{p}}{D t} Э_{2}{ }^{i}{ }_{2}{ }^{j} \tag{1.4}
\end{equation*}
$$

Utilizing (1.4), we pass from the noninvariant (matrix) Eq. (1.3) to the tensor equation [2]. To do this we introduce the local basis $\exists_{1}{ }^{i}$ in the unloading space 2. then denoting the somponents of the tensor $D_{E}{ }^{p} / D_{t}$ in the basis $Э_{1}{ }^{i}$ by $\gamma_{i j}{ }^{p}$ we abtain

$$
\begin{equation*}
D \varepsilon_{i j}^{p} / D t=C_{\cdot i}^{\alpha} \gamma_{\alpha \beta}^{p} C_{\cdot j}^{\beta \cdot}, \quad \mathrm{C}=C_{\cdot \beta}^{\alpha \cdot} \ni_{1}^{\beta} Э_{1 \alpha} \tag{1.5}
\end{equation*}
$$

Here the tensor C with matrix $\left\|C^{a}{ }^{a}{ }_{\beta}\right\|$ defines the transformation from the covariant basis vector $Э_{2 i}$ to the vector basis $Э_{1 \alpha}$ according to the law $Э_{2 i}=C^{\alpha}{ }_{\cdot 1}^{\alpha} \exists_{1 \alpha}$. The space 1 differs from the space 2 by elastic deformations \mathbf{C} and elastic rotations of each particle of the medium, hence in the basis $Э_{1}{ }^{i}$ we have the following representation for the tensor C [2]:

$$
\begin{equation*}
\mathbf{C}=\exp [\mathbf{k}] \sqrt{\mathbf{g}-2 \varepsilon^{e}}, \quad \mathbf{k}=k_{i j} Э_{1}{ }^{i} Э_{1}{ }^{j}, \quad \mathbf{g}=g_{i j}{ }^{(1)} \ni_{1}{ }^{i} Э_{1}{ }^{j} \tag{1.6}
\end{equation*}
$$

Here \mathbf{k} is the antisymmetric tensor of elastic rotations; \boldsymbol{g} is the fundamental metric tensor. Substituting (1.6) into (1.3), we obtain the tensor equation (*)

$$
\begin{equation*}
D \varepsilon^{e} / D t+\left(\mathbf{g}-2 \varepsilon^{e}\right)^{1 / 2} \exp [-\mathbf{k}] \boldsymbol{\gamma}^{p} \exp [\mathbf{k}]\left(\mathbf{g}-2 \varepsilon^{e}\right)^{1 / 2}=\mathbf{e} \tag{1.7}
\end{equation*}
$$

Passing from the frozen ξ^{i} to the fixed x^{k} system, taking account of the transformations for convective derivatives [2 and 10], we have
$d \varepsilon^{e} / d t+\omega \varepsilon^{e}-\varepsilon^{e} \omega+\mathbf{e s}^{e}+\varepsilon^{e} \mathbf{e}+\left(\mathrm{g}-2 \mathrm{e}^{e}\right)^{1 / 3} \exp [-\mathrm{k}] \boldsymbol{\gamma}^{p} \exp [\mathrm{k}]\left(\mathrm{g}-2 \mathrm{e}^{\mathrm{e}}\right)^{1 / 4}=\mathbf{e}$
Here the tensors $\varepsilon^{\circ}, e, g, k, \gamma^{p}, \omega$ are defined in the \boldsymbol{x}^{k} system and have the covariant components $\varepsilon_{i j}{ }^{\circ}, e_{i j}, \xi_{i j}, k_{i j}, \gamma_{i j}{ }^{p}, \omega_{i j}$, where

$$
\frac{d}{d t}=\frac{\partial}{\partial t}+v^{\alpha} \nabla_{\alpha}, \quad e_{i j}=\frac{1}{2}\left(\nabla_{i} v_{j}+\nabla_{j} v_{i}\right), \quad \omega_{i j}=\frac{1}{2}\left(\nabla_{i} v_{j}-\nabla_{j} v_{i}\right)
$$

ν^{a} are velocity vector components, $e_{i j}$ strain rate tensor components, $\left\|\omega_{i j}\right\|$ the matrix of the vorticity tensor, ∇_{a} the symbol of convariant differentiation.

The kinematic relationship (1.8) defines the desired connection between the elastic, irreversible, and total tensor characteristics of the deformation. In contrast to the matrix relationship (1.3), the irreversible strain rate in the tensor relationship (1.7) is connected nonlinearly (because of the reversible deformations, and elastic rotations of an element of the medium) to the total strain rate and the rate of elastic strain.

Later we shall consider only such kinds of media whose macroscopic state is independent of internal rotations, and therefore of the quantity \mathbf{k}. As will be seen later, governing equations of such media, without the tensor k, may actually be obtained.

Let us introduce the new tensor
*) In.A. Buevich has obtained an analogous equation, where the kinematics of finite elastoplastic deformations is considered somewhat-differently for Maxwellian media.

$$
\begin{equation*}
\mathbf{e}^{p}=\exp [-k] \gamma^{p} \exp [k]=e_{i j}^{p} Э^{i} Э^{j} \tag{1.9}
\end{equation*}
$$

It follows from (1.9) and the symmetry of $\boldsymbol{\gamma}^{\boldsymbol{P}}$ that $\mathrm{e}^{\boldsymbol{P}}$ is symmetric tensor; all three invariants of e^{p} coincide with the invariants of $\boldsymbol{\gamma}^{p}$, however the principal directions differ by the magnitude of the elastic rotations.

It is convenient to take the Hencky tensor h, which is an isotropic function of the tensor ε^{e}, as a measure of the reversible deformation:

$$
\begin{equation*}
h=-1 / 2 \ln \left(g-2 \varepsilon^{e}\right) \tag{1.10}
\end{equation*}
$$

The principal axes of the tensors h and ε^{e} coincide.
Inserting the quantity e^{p} according to (1.9) into the fundamental kinematic relation (1.8), replacing e^{e}. by h according to (1.10), and multiplying on the left and on the right in this equation by the nondegenerate matrix $\exp [h]$, we obtain

$$
\begin{gather*}
\frac{\Delta h}{\Delta t}+\mathbf{e}^{p}-\mathbf{e}=\mathbf{f}\left(\mathbf{h} ; \boldsymbol{\omega}, \mathbf{e}, \frac{d \mathbf{h}}{d t}\right) \tag{1.11}\\
2 \mathbf{f}=\exp [\mathrm{h}] \frac{d}{d t}(\exp [-2 \mathrm{~h}]) \exp [\mathrm{h}]+2 \frac{d \mathrm{~h}}{d t}+2 \omega \mathrm{~h}- \\
-2 h \omega+\exp [\mathrm{h}] \omega \exp [-\mathrm{h}]-\exp [-\mathrm{h}] \omega \exp [\mathrm{h}]+ \\
+\exp [\mathrm{h}] \exp [-\mathrm{e}]+\exp [-\mathrm{h}] \mathbf{e} \exp [\mathrm{h}]-2 \mathrm{e}
\end{gather*}
$$

Here and henceforth, tensor (matrix) products are introduced. The Jaumann derivative

$$
\begin{equation*}
\left(\frac{\Delta^{h}}{\Delta^{t}}\right)_{i j}=\frac{\partial h_{i j}}{\partial t}+v^{\alpha} \nabla_{\alpha} h_{i j}+\omega_{i}^{\alpha} \cdot h_{\alpha j}-h_{i \alpha} \omega_{j}^{\alpha} \tag{1.12}
\end{equation*}
$$

is denoted by the symbol $\Delta / \Delta t$.
The distinguishing property of the Jaumann derivative is

$$
\begin{equation*}
(\Delta \mathrm{g} / \Delta t)_{t j}=0 \tag{1.13}
\end{equation*}
$$

The tensor \mathbb{f} from (1.11) possesses the following properties: \mathbb{I} is a symmetric tensor, i.e., $f_{i j}=f_{i j}$.

The scalar product of the tensor f by an arbitrary function $\phi(\mathbf{h})$ is zero, i.e.,

$$
\begin{equation*}
\varphi^{i j}\left(h_{\alpha g}\right) f_{i j}=0, \quad g^{i j} f_{i j}=\operatorname{Sp} \mathrm{f}=0 \tag{1.14}
\end{equation*}
$$

For sufficiently small elastic strains ($h=a H, a \ll 1$)

$$
\begin{gather*}
2 f=h^{2} \mathrm{e}-2 h \mathrm{eh}+\mathrm{eh}^{2}+O\left(h^{3} \mathrm{e}+\ldots\right)+ \\
+h \omega h^{2}-h^{2} \omega h+1 / 3 h^{8} \omega-1 / 3 \omega h^{3}+O\left(h^{4} \omega+\ldots\right)+ \\
+\frac{2 h}{3} \frac{d h}{d l} h-\frac{h^{3}}{3} \frac{d h}{d t}-\frac{d h}{d t} \frac{h^{2}}{3}+O\left(h^{8} \frac{d h}{d t}+\ldots\right) \tag{1.15}
\end{gather*}
$$

Taking account of (1.11) and (1.12), Formula (1.15) shows that for sufficiently small reversible deformations the right side of the kinematic relation (1.11) contains terms two orders higher than the terms of the left side.

When the kinematic tensors ω, e and $d \boldsymbol{h} / d t$ commute with the tensor $h, f \equiv 0$ holds. Such a case is realized, say, in affine deformations of the medium, when the directiona of the principal axes of the tensors e, h and $d h / d t$ coincide or are fixed in space, and $\omega=0$.

Contracting the kinematic relation (1.11) according to subscripts, we obtain

$$
\begin{equation*}
d h_{\alpha \alpha} / d t+\gamma_{\alpha \alpha}^{p}=e_{\alpha a} \tag{1.16}
\end{equation*}
$$

Introducing the notation $\rho_{0}, \rho_{1}, \rho_{2} ; g_{0}-g_{1}, g_{2}$ for the densities and determinants of the metric tensors in the initial, deformed and "unloading" statea, respectively, we will have

$$
h_{a \alpha}=\frac{1}{2} \ln \frac{g_{1}}{g_{2}}=\ln \frac{\rho_{3}}{\rho_{1}}, \quad \gamma_{a \alpha}^{p}=\frac{1}{2} \frac{d}{d t} \ln \frac{g_{2}}{g_{0}}=\frac{d}{d t} \ln \frac{\rho_{0}}{\rho_{2}}
$$

$$
\begin{equation*}
e_{a \alpha}=\frac{1}{2} \frac{d}{d t} \ln \frac{g_{1}}{g_{0}}=\frac{d}{d t} \ln \frac{\rho_{0}}{\rho_{1}} \tag{1.17}
\end{equation*}
$$

Substituting these expressions into (1.16), we obtain an identity of obvious physical meaning: the sum of the reveraible and irreversible volume atrain rates equals the total volume strain rate of the mediam.

As will be shown below, the introduced tensor $e_{i j} p$ is defined uniquely in terms of the observed kinematic (strain rate tensor $e_{i j}$) and dynamic (stress tensor $\sigma_{i j}$) quantities.

Hence, despite the fact that the tensor of elastic rotations $k_{i j}$ remains undefined in terms of these quantities, components of the irreversible strain rate tensor in the unloading space

$$
D e^{p} / D t=\exp [-h] e^{p} \exp [-h]
$$

can easily be determined by means of the trans formation formulas (1.5), (1.6), taking account of the definition of $e_{i j}{ }^{p}$.

Let us note that the kinematic relations (1.8) and (1.11) in the two limit cases $\boldsymbol{e}^{e} \rightarrow 0$ $(k \rightarrow 0)$ or $\gamma^{p} \rightarrow 0$ go over into the kinematic relations for a viscous fluid and a medium with reversible elastic atrains, respectively.
2. Expression for entropy production in a system. Simplest viscoelastic models. Common to any type of continuum are the equations of conservation of mass, momentum and total energy

$$
\begin{equation*}
\frac{d \rho}{d t}=-\rho \frac{\partial v_{\beta}}{\partial x_{\beta}}, \quad \rho \frac{d v_{t}}{d t}=\frac{\partial \sigma_{i \beta}}{\partial x_{\beta}}, \quad \rho \frac{d w}{d t}=\frac{\partial}{\partial x_{\beta}}\left(v_{\alpha} \sigma_{\alpha, 3}-q_{\beta}\right) \tag{2.1}
\end{equation*}
$$

Here ρ is the density of the medium, v_{a} the velocity vector components, $\sigma_{i j}$ the stress tensor componenta, w the total energy of unit mass, $q \beta$ the heat flux vector components. For simplicity the equations are written in a Cartesian rectangular coordinate system.

The stress tensor in a medium without internal moments is symmetric $\sigma_{i j}=\sigma_{j i}$, and the total energy consists of the kinetic energy and the internal energy of the medium $\rho \omega=1 / 2 \rho$ $v_{a}^{2}+\rho u$.

The principal difference in the various model media is in the specific internal energy u. As has already been said, we shall consider that medium in which the specific internal energy depends on the specific entropy s and the Hencky tensor h of the reversible deformation $u=u\left(s, h_{1 j}\right)$ (here the choice of $h_{i j}$ instead of $\varepsilon_{i j}{ }^{e}$ is made from considerations of convenience). The Gibbs relation may be written as

$$
\begin{equation*}
\frac{d u}{d t}=T \frac{d s}{d t}+\left.\frac{d u}{d t}\right|_{s} \tag{2.2}
\end{equation*}
$$

Utilizing the equations of this Section it is easy to obtain an equation for the specific entropy

$$
\begin{equation*}
\rho \frac{d s}{d t}=-\frac{\partial}{\partial x_{\beta}} \frac{q_{\beta}}{T}+P_{s}, \quad P_{s} \geq 0, \quad T P_{s}^{\prime}=-\frac{q_{\beta}}{T} \frac{\partial T}{\partial x_{\beta}}+\sigma_{\alpha \beta} e_{\alpha \beta}-\left.\rho \frac{d u}{d t}\right|_{s} \tag{2.3}
\end{equation*}
$$

Here $e_{\alpha \beta}$ is the atrain rate, P_{z} the entropy production, which according to the second law of thermodynamics is positive for nonequilibrium processes and vanishes at equilibrium. The uniqueness of the isolation of the expression $P_{\text {. }}$ as the entropy production in (2.3) is based on the invariance of this expression relative to the Galileo transformation, and on $P_{\text {. }}$ vanishing for thermodynamic equilibrium [12]. In the case of an isotropic medium, the scalar function of the internal energy may depend only on invarimen of the atrain tensor

$$
I_{1}=h_{\text {aa }}, \quad I_{2}=h_{a \beta} h_{\text {Ra }}, \quad I_{2}=h_{\varepsilon \beta} h_{\beta \gamma} h_{\gamma a}
$$

Then $d u /\left.d t\right|_{\text {. }}$ cen be written as

$$
\begin{equation*}
\left.p \frac{d u}{d t}\right|_{s}=\sigma_{a \beta}^{\bullet}\left(\frac{\Delta h}{\Delta t}\right)_{a \beta}, \quad \frac{\sigma_{i j}^{*}}{\rho}=\frac{\partial u}{\partial I_{1}} \delta_{i j}+\frac{\partial u}{\partial I_{2}} 2 h_{i j}+\frac{\partial u}{\partial I_{3}} 3 h_{i a} h_{a j} \tag{2.4}
\end{equation*}
$$

Here the $\sigma_{i j}$ " are components of the "elastic stress" tensor.
In order to extract the independent thermodynamic forces and thermodynamic fluxes correctly in the expression for the entropy production let us atilize the fundamental kinematic relationship (1.11), and let us divide the tensor quantities into global and deviatoric parts. For example

$$
\sigma_{i j}=\sigma_{i j}^{\prime}+1 / 3 \sigma_{\alpha \alpha} \delta_{i j}, \quad \sigma_{\alpha \alpha}^{\prime}=0
$$

Then the expression for the entropy production is rewritten as
$T P_{s}=\left(\sigma_{\alpha \beta}^{\prime}-\sigma_{\alpha \beta}^{e^{\prime}}\right) e_{\alpha \beta}^{e^{\prime}}+\sigma_{\alpha \beta}^{e^{\prime}} e_{\alpha \beta}^{p^{\prime}}-\frac{q_{\beta}}{T} \frac{\partial T}{\partial x_{\beta}}+1 / 3\left(\sigma_{\alpha \alpha}-\sigma_{\alpha \alpha}^{e}\right) e_{\beta \beta}+1 / 3 \sigma_{\alpha \alpha}^{e} e_{\beta \beta}^{p}$
It is now possible to proceed to obtaining the governing equations of the medium. For a thermodynamic approach to describing it, the quantities $\sigma_{\alpha \beta}, \sigma_{a \beta}{ }^{\circ}$ and $\partial T / \partial x_{\beta}$ in (2.5) for the entropy production play the part of thermodynamic forces, $e_{\alpha} \beta_{1} e_{a} \beta^{p}$ and q_{β}, of thermodynamic fluxes. According to the customary linear theory of TIP they are connected by linear phenomenological relationships [12], which, in particular, yield the goveming equations of the medium.

By virtue of the Curie principle, the phenomenological relationships for scalar, vector, and tensor phenomena separate in an isotropic medium. Taking account of the Onsager reciprocity relation [12], we obtain for the scalar phenomena

$$
\begin{equation*}
\sigma_{\alpha \alpha}-\sigma_{\alpha \alpha}^{e}=a_{1} e_{\alpha \alpha}+a_{2} e_{\alpha \alpha}^{p}, \quad \sigma_{\alpha \alpha}^{e}=a_{2} e_{\alpha \alpha}+a_{3} e_{\alpha \alpha}^{p} \tag{2.6}
\end{equation*}
$$

for the vector phenomena

$$
\begin{equation*}
q_{i}=-x\left(\partial T / \partial x_{i}\right) \tag{2.7}
\end{equation*}
$$

for the tensor phenomena

$$
\begin{equation*}
\sigma_{i j}^{\prime}-\sigma_{i j}^{e^{\prime}}=b_{1} e_{i j^{\prime}}+b_{2} e_{i j}^{p^{\prime}}, \quad \sigma_{i j}^{\prime^{\prime}}=b_{2} e_{i j^{\prime}}+b_{3} e_{i j}^{p^{\prime}} \tag{2.8}
\end{equation*}
$$

The kinetic coefficients x, a_{k}, b_{k} are generally functions of T and $I_{k}\left(h_{i j}\right)$.
Entropy production becomes a nonnegative-definite quadratic form (α_{k}, β_{k} are easily expressed in terms of a_{k}, b_{k})
$T P_{s}=\alpha_{1} e_{\alpha \alpha}^{2}+2 \alpha_{2} e_{\alpha \alpha} \sigma_{\beta \beta}+\alpha_{3} \sigma_{\beta \beta}^{2}+\beta_{1} e_{\alpha \beta}^{\prime 2}+2 \beta_{2} e_{\alpha \beta}^{\prime} \sigma_{\alpha \beta}^{\prime}+\beta_{3} \sigma_{\alpha \beta}^{\prime 2}+x T^{-1}\left(\partial T / \partial x_{\beta}\right)^{2}$
Conditions for positive-definiteness of the quadratic form are

$$
\begin{gather*}
\kappa>0, a_{1}>0, b_{1}>0, a_{1} a_{3}>a_{2}^{2}, b_{1} b_{3}>b_{2}{ }^{2}, \alpha_{1}>0, \beta_{1}>0 \\
\alpha_{1} a_{3}>\alpha_{2}^{2}, \beta_{1} \beta_{3}>\beta_{2}^{2} \tag{2:10}
\end{gather*}
$$

The inequalities (2.10) (part of whinh may he weakened in varions particular cases) are sufficient also for a unique definition of the flows in terms of the thermodynamic forces.

Taking account of the inequalities (2.10), tha kinematic relationship (1.11), and the expressions (2.4) for $\sigma_{i j}{ }^{\circ}$, Eqs. (2.6) and (2.8) are a closed nonlinear system of rheological equations of some isothermal model of a compressible viscoelastic fluid, which is as shown below, describes retardation and relaxation.

Let us consider the equation for the medium temperature.
Let us determine the specific heat for a constant reversible deformation

$$
\begin{equation*}
c_{h}=\left(\frac{\partial u}{\partial T}\right)_{h}=T\left(\frac{\partial s}{\partial T}\right)_{h} \tag{2.11}
\end{equation*}
$$

Transforming it by utilizing (2.3), we obtain

$$
\begin{gather*}
\rho c_{h} \frac{d T}{d t}+\rho T\left(\frac{\partial s}{\partial h_{\alpha \beta}}\right)_{T} \frac{\left\lceil d h_{\alpha \beta}\right.}{d t}=\nabla_{\alpha}\left(\chi_{\nabla \alpha} T\right)+T P_{s}^{+} \tag{2.12}\\
T P_{s}^{+}=T P_{s}-\chi\left(\nabla_{\beta} T\right)^{2}
\end{gather*}
$$

From the condition of integrability of the specific free energy u-Ts we have

$$
\left(\frac{\partial s}{\partial h_{i j}}\right)_{T}=1\left(\frac{\partial \sigma_{i j}{ }^{j} / \rho}{\partial T}\right)_{h}
$$

Then (2.12) may be transformed into

$$
\begin{equation*}
\rho c_{\mathrm{h}} \frac{d T}{d t_{\mathrm{l}}}=\nabla_{\alpha}\left(x_{\nabla_{\alpha}} T\right)+T P_{s}^{+}+\rho T\left(\frac{\partial \sigma_{\alpha \beta}^{e} / \rho}{\partial T}\right)_{\mathrm{h}} \frac{d h_{\alpha \beta}}{d t} \tag{2.13}
\end{equation*}
$$

Formula (2.13) shows that the thermal effect in the deformation of the viscoelastic medium considered is due to the dissipative term, as well as an additional term, which appear particularly sharply in rapid changes of the mode of medium deformation. Great heating has actually been observed [14] in rotational viscosimeters during a sudden stop in the flow of viscoelastic flaids of various kinds.

We can introduce the specific heat for a constant ten sor $\tau=\sigma \%$ (which corresponds to constant stress in Maxwellian or elastic media), which is connected with c_{h} by means of the relationship

$$
c_{\tau}=c_{h}-T\left(\frac{\partial \tau_{\alpha \beta}}{\partial T}\right)_{\tau} \frac{d \tau_{\alpha \beta}}{d t}
$$

The heat conduction Eq. (2.13) becomes

$$
\begin{equation*}
\rho c_{\tau}^{\imath} \frac{d T}{d t}=\nabla_{\alpha}\left(\times \nabla_{\alpha} T\right)+T P_{s}^{+}+. \rho T\left(\frac{\partial h_{\alpha \beta}}{\partial T}\right), \frac{d \tau_{\alpha \beta}}{d t} \tag{2.14}
\end{equation*}
$$

When the elasticity in the medium is of entropic nature, as may be in the flow of polymer solutions and melts, for isothermal deformation

$$
0=\left(\frac{\partial u}{\partial h_{i j}}\right)_{T}=\left(\frac{\partial u}{\partial s}\right)_{h}\left(\frac{\partial s}{\partial h_{i j}}\right)_{T}+\left(\frac{\partial u}{\partial h_{i j}}\right)_{s}=-T\left(\frac{\partial \tau_{i j}}{\partial T}\right)_{h}+\tau_{i j}
$$

From this results $\tau_{i j}=\tau_{i j}{ }^{\circ} T / T_{0}$ (the superscript ${ }^{\circ}$ shows that the tensor $\tau_{i j}{ }^{\circ}$ is referred to some "initial" temperature T_{0}). In combination with the above-mentioned rheological Eqs. (2.13) or (2.14) describe nonisothermal behavicr of the considered viscoelastic medium.

The system of Eqs. (1.11), (2.4), (2.6) and (2.8) describes the nonlinear behavior of a medium possessing stress relaxation and aftereffect. Let us show that in particular cases the nonlinear Maxwell model with relaxation time, and the Kelvin-Voigt model with retardation time can be obtained from these equations.
1°. Nonlineaf Maxwell Model. Letus set

$$
a_{1}=a_{2}=b_{1}=b_{2}=0, \quad a_{3}>0, \quad b_{3}>0
$$

in (2.6) and (2.8).
Then using the notation $b_{3}=2 \eta, a_{3}=3 \zeta(\eta, \zeta$ shear and volume viscosity coefficients), we obtain

$$
\begin{equation*}
\sigma_{i j}=2 \eta e_{i j}^{p}+(\zeta-2 / \mathrm{z} \eta) \operatorname{ea\alpha a}_{i j}^{p} \delta_{i j}=\sigma_{i j}^{e}=\rho \frac{\partial u}{\partial I_{2}} \delta_{i j}+2 \rho \frac{\partial u}{\partial I_{2}} h_{i j}+3 \rho \frac{\partial u}{\partial I_{\mathrm{z}}} h_{i \alpha} h_{\alpha j} \tag{2.15}
\end{equation*}
$$

The syatem (2.15) shows that the stress tensor in a Maxwell huid is coanected with the elastic strain tenaor just as in the equilibrium case of a purely elastic medium, and the tencor it $_{i}{ }^{p}$ characterizing the irreversible strain rate is also connected with the stresses by Newton's law, as in the cnse of a viscons medium.

The exprescion for the dianipation take the simple form
 the medium do not affect the value of the disapation. If e^{p}, h are expressed in terms of σ according to (2.15) and aubatitated into the kinomatic rolationehip (1.11), we then obtain the reological equation of a Maxwell flaid, which connecta the atrene tensor with the total strain rate tenmor.

2 ${ }^{\circ}$. Nonlinear Kelyin-Voigt Model (see also [15]). This model can be obtained by the following formal means. Let us set $e^{P}=0\left(\gamma^{p}=0\right)$ in (2.5) and the kinematic relationship (1.11). Then we have $\sigma_{a \alpha}=\sigma_{a a^{e}}+a e_{a \alpha}$ in place of (2.6). An alogously, $\sigma_{i j}{ }^{\prime}=\sigma_{i j}{ }^{\prime \theta}+b e_{i j}^{\prime}$. Furthermore, let us use the notation $a=3 \zeta, b=2 \eta$. For $y^{p}=0$ there holds $\varepsilon^{e}=\varepsilon$ and the kinematic relationship (1.11) becomes (see also (1.8))

$$
\begin{equation*}
\frac{d \varepsilon}{d t}+\omega \varepsilon-\varepsilon \omega+e \varepsilon+\varepsilon e=! \tag{2.17}
\end{equation*}
$$

This is the expression for the customary connection between the finite strain tensor and the strain rate. The corresponding rheological equation will be

$$
\begin{equation*}
\sigma=\sigma^{e}(\mathbf{h})+2 \eta e+(\zeta-2 / s \eta)(S p e) g \tag{2.18}
\end{equation*}
$$

In combination with the heat conduction equation, the system of Eqs. (2.17) and (2.18) is a closed system of thermorheological equations for a compressible viscoelastic isotropic medium with aftereffect. The expression for the entropy production is

$$
\begin{equation*}
T P_{s}=x T^{-1}\left(\nabla_{\alpha} T\right)^{2}+\zeta e_{\alpha \alpha}^{2}+2 \eta e_{\alpha \beta}^{\prime 2} \tag{2.19}
\end{equation*}
$$

A relationship of the type (2.18) has been obtained in [15] for the case of large elastic deformations.

In concluding this Section let us make two remarks.

1. Phenomenological connections between the stresses, total strains and their total time derivatives, obtained on the basis of an expression of type (2.4) for the entropy production without the kinematic relationship (1.11), become very ambiguous. This latter follows, say, from the fact that

$$
\varphi_{i j}(\mathrm{E})\left(\frac{\Delta \psi(\mathrm{e})}{\Delta t}\right)_{i j}=\varphi_{i j}(\mathrm{e}) \psi_{j k}^{\prime}(\mathrm{E})\left(\frac{\Delta \mathrm{E}}{\triangle t}\right)_{k i}=\varphi_{i j}(\mathrm{E}) \psi_{j k}^{\prime}(\mathrm{\varepsilon}) \frac{d \varepsilon_{l, i}}{d t}
$$

while

$$
\left(\frac{\triangle \psi(\varepsilon)}{\Delta^{t}}\right)_{i j} \neq \psi_{i k}^{\prime}(\varepsilon)\left(\frac{d \varepsilon}{d t}\right)_{k j}
$$

The arbitrariness in selecting the thernodynamic forces which appears in the absence of the kinematic relationship leads to great arbitrariness in the rheological relations obtained.

In the presence of the kinematic relationships (1.11), independently of the selection of the measure of reversible strain, the final rheological equations are obtained completely uniquely as a result of the above-mentioned procedure.
2. In general, the results of this Section refer to the case of weak nonequilibrium; it can only be hoped (as the examples presented below indicate) that they have a sufficiently broad domain of applicability for viscoelastic media. In the more general case it is apparently expedient to use the, methods elucidated in [11].
3. Governing equations for simple viscoelastic fluids in the presence of sufficiently small reversible strains. Let the reversible strains in a viscoelastic medium be sufficiently small as compared with the total strains. Such a case is realized in weakly elastic fluids as well as for sufficiently slow motions. Formally expanding the kinematic relationship (1.11) for sufficiently amall h and discarding terms whose order is h^{2} greater than the rest, we will have the "linearized" kinematic relationship

$$
\begin{equation*}
\Delta \mathbf{h} / \Delta t+\mathbf{e}^{p}=\mathbf{e} \tag{3.1}
\end{equation*}
$$

For sufficiently small h the function $u(s, h)$ can be represented with cubic accuracy as

$$
\begin{equation*}
\rho_{0} u=\rho_{0} u_{0}(s)+\mu I_{2}+1 / 2 \lambda_{0} I_{1}^{2}+1 / 3 \lambda_{1} I_{3}+\lambda_{2} I_{1} I_{2}+1 / 8 \lambda_{3} I_{1}^{2} \tag{3.2}
\end{equation*}
$$

Here ρ_{0} is the value of the medium density in the undeformed state at the temperature T_{0}; μ is the shear modulus; $K=\lambda_{0}+2 / 3 \mu$ the modulus of multilateral comprension; $\lambda_{1}, \lambda_{2}, \lambda_{3}$ the characteristics of the "anharmonic part" of the internal energy.

According to the requirement for themodynamic stability of the system, the expansion of
u in terms of h starts with quadratic terms in which μ and K are positive, but the signs of the λ_{n} are not definite.

Now evaluating $\sigma_{i j}{ }^{0}$ on the basis of (2.4) and utilizing (3.2), we have

$$
\begin{equation*}
\rho_{0} / \rho \sigma_{i j}^{e}=\left(\lambda_{0} I_{1}+\lambda_{2} I_{2}+\lambda_{3} I_{1}^{2}\right) \delta_{i j}+2\left(\mu+\lambda_{2} I_{1}\right) h_{i j}+\lambda_{1} h_{i \alpha} h_{\alpha j} \tag{3.3}
\end{equation*}
$$

It is seen from this expression that keeping just third order anharmonic terms in the expansion of the internal energy in terms of the strain h corresponds to the accuracy of the "linearized" kinematic relationship (3.1). As in (3.1), there are lower order terms in h in (3.3) and terms whose order is h^{2} greater than the rest are not taken into account (*)

It is easy to separate σ° into spherical and deviatoric parts

$$
\begin{gather*}
\rho_{0} / \rho J_{\alpha a}^{\beta}=\left(3 \lambda_{0}+2 \mu\right) I_{1}+\left(3 \lambda_{2}+\lambda_{1}\right) I_{2}+\left(2 \lambda_{2}+3 \lambda_{3}\right) I_{1}^{2} \\
\rho_{0} / \rho J_{i j^{\epsilon^{\prime}}}=2\left(\mu+\lambda_{2} I_{1}\right) h_{i j}^{\prime}+\lambda_{1}\left(h_{i \alpha} h_{\alpha j}-1 / 3 I_{2} \delta_{i j}\right) \tag{3.4}
\end{gather*}
$$

Relative to the spherical part it is reasonable to expect that at low pressures the irreversible volume changes are insignificant, i.e., $e_{a \alpha} \approx 0$. Then according to (1.16) and (2.6)

$$
\sigma_{\alpha \alpha}-\sigma_{\alpha \alpha}^{e}=a e_{\alpha \alpha}=d h_{\alpha \alpha} / d t
$$

Utilizing (3.4), $\sigma_{a \alpha}{ }^{*}$ can hence be eliminated, and an equation relating $\sigma_{a \alpha}$ and $I_{1}=h_{\alpha a}$ can be obtained:

$$
\begin{equation*}
\sigma_{\alpha \alpha}=a\left(d I_{1} / d t\right)+\frac{\rho_{0}}{\rho}\left[\left(3 \lambda_{0}+2 \mu\right) I_{1}+3\left(\lambda_{2}+\lambda_{1}\right) I_{2}+\left(2 \lambda_{2}+3 \lambda_{3}\right) I_{1}^{2}\right] \tag{3.5}
\end{equation*}
$$

This equation describes the volume aftereffect in the medium. Since $e_{\alpha 0}^{p}=0$ we have $I_{1}=h_{a \alpha}=\ln \left(\rho_{0} / \rho\right)$, then for small deformations (3.5) passes into the nonlinear Kelvin-Voigt equation relating the volume strain to the isotropic pressure. In the more general case, when it is impossible to neglect irreversible volume changes ($e_{\alpha a}{ }^{p} \neq 0$), it is necessary to use the system of Eqs. (1.16), (2.1), (2.6) and (3.4), which describes relaxation of the pressure and strain rate, in order to describe volume effects.

Let us here consider the simplest case also for the deviatoric stresses. Let us assume that in the expression for internal energy the anharmonic terms may generally be neglected (**). Then Hooke's law $\sigma_{i j}{ }^{* \prime}=2 \mu h_{i j}$ ' holds for the "elastic" stresses, and it is easy to eliminate e^{p} and h from the system of Eqs. (2.8). We hence obtain the rheological Eq.

$$
\begin{equation*}
\theta_{1}\left(\frac{d \sigma_{i j}{ }^{\prime}}{d t}-\sigma_{i \alpha}^{\prime} \omega_{\alpha j}+\omega_{i \alpha} \sigma_{\alpha j}^{\prime}\right)+\sigma_{i j}^{\prime}=2 \eta\left[\theta_{2}\left(\frac{d e_{i j}^{\prime}}{d t}+\omega_{i \alpha} e_{\alpha j}^{\prime}-e_{i \alpha}^{\prime} \omega_{\alpha j}\right)+e_{i j}^{\prime}\right] \tag{3.6}
\end{equation*}
$$

In deriving (3.6) the case of an incompressible medium ($\rho=\rho_{0}$) was considered and the coefficients in relationships (2.8) were assumed constant. The coefficients θ_{1}, θ_{2} and η in (3.6) are connected with the coefficients of (2.8) as follows:

$$
\begin{equation*}
\theta_{1}=b_{3} /(2 \mu), \quad \theta_{2}=\left(b_{1} b_{3}-b_{2}^{2}\right) /(4 \mu \eta), \quad 2 \eta=b_{1}+2 b_{2}+b_{3} \tag{3.7}
\end{equation*}
$$

It follows from the inequalities (2,10) and from $\mu>0$ that

$$
\begin{equation*}
\eta>0, \quad \theta_{1}>\theta_{2}>0 \tag{3.8}
\end{equation*}
$$

i.e., the positiveness of the viscosity coefficient and the relaxation time, and the fact that the stress relaxation time is always greater than the time of the aftereffect of the strain rate.

An illustrative model of one elastic spring and two viscous elements in two equivalent
*) It is understood that only tems which do not raise the order of (3.3) as a whole are kept in the expansion of ρ in terms of h.
**) Within the scope of the expounded phenomenological theory, the satisfactoriness of such an approximation was not clear before; comparison of the consequences of the model equations with experimental results will be elucidated below.
versions corresponds to the linearized Eq. (3.6) at low flow rates: in one version the Maxwell element connected in parallel with one of the viscous elements, can be isolated, and in the other the Kelvin-Voigt element, connected in series with a viscons element.

Model equations similar to (3.6) have been repeatedly relied upon, and not without success, for the description of viscoelastic fluids [16]. However, as will be shown below, these equations do not describe correctly enough such an important property of viscoelastic fluids as the normal stresses. In those cases when the effect of the normal stresses plays a large part, refined equations are necessery.

There are several formal possibilities for refining the equations by remaining within the scope of the kinematic relationship (3.1) linear in h. Two of them concern refinement of the phenomenological relationships between thermodynamic fluxes. One is to keep quadratic terms in the thermodynamic forces (orfluxes) in relations of the type (2.6) to (2.8); such a method extends beyond the scope of customary TIP theory.

The other method within the limits of this theory is to take account of the dependence of the kinetic coefficients on the elastic strains h. Elastic strains result in a deformational anisotropy of an initially isotropic medium so that it is necessary to generalize the relationships (2.6) to (2.8). In the incompressible case ($a_{\alpha \alpha}=0, h_{a \alpha}=0$), the relationships for the stresses become, with linear accuracy in the strain h,

$$
\begin{gather*}
\sigma_{i j}-\sigma_{i j}^{e}=b_{1} e_{i j}+b_{11}\left(h_{i \alpha} e_{\alpha j}+h_{j \alpha} e_{\alpha i}\right)+b_{12} h_{\alpha \beta} e_{\alpha j} \delta_{i j}+ \\
+b_{2} e_{i j}^{p}+b_{21}\left(h_{i \alpha} e_{\alpha j}^{p}+e_{i \alpha}^{p} h_{\alpha j}\right)+b_{22} h_{\alpha \beta} e_{\alpha \beta}^{p} \delta_{i j} \tag{3.9}\\
\sigma_{i j}^{e}=b_{2} e_{i j}+b_{21}\left(h_{i \alpha} e_{\alpha j}+e_{i \alpha} h_{\alpha j}\right)+b_{22} h_{\alpha,} e_{\alpha \beta} \delta_{i j}+ \\
+b_{3} e_{i j}^{p}+b_{31}\left(h_{i \alpha} e_{\alpha j}^{p}+e_{i \alpha}^{p} h_{\alpha j}\right)+b_{32} h_{\alpha j} e_{\alpha \beta}^{p} \delta_{i j}
\end{gather*}
$$

Still another possibility is to take account of the anharmonic members in the expression for the internal energy. As an illustration, let ns write down the equation for an incompressible medium by utilizing the relationship (2.8) with constant kinetic coefficients and elastic stresses (3.3)

$$
\begin{gather*}
\left(\frac{\Delta h}{\Delta t}\right)_{i j}+\frac{1}{\theta_{1}} h_{i j}+\frac{\lambda_{1}}{b_{3}}\left(h_{i \alpha} h_{\alpha j}-\frac{1}{3} I_{2} \delta_{i j}\right)=\left(1+\frac{b_{2}}{b_{3}}\right) e_{i j} \\
\sigma_{i j}=\left(b_{1}-b_{2}^{2} / b_{3}\right) e_{i j}+\frac{b_{2}+b_{3}}{\theta_{1}} h_{i j}+\frac{\lambda_{1}}{b_{3}}\left[\left(b_{2}+b_{3}\right) h_{i \alpha} h_{\alpha j}-\frac{b_{3}}{3} I_{2} \delta_{i j}\right] \tag{3.10}
\end{gather*}
$$

The relationships (3.1), (3.4) and (3.9) possess the same accuracy in h. Within the limits of this same accuracy, they can be utilized to obtain an equation connecting h with the strain rate e for an incompressible medium

$$
\begin{equation*}
\left(\frac{\Delta h}{\Delta t}\right)_{i j}+\frac{2 \mu}{b_{3}} h_{i j}+\frac{\lambda_{1} b_{3}-4 \mu b_{91}}{2 b_{3}^{2}}\{\mathbf{h h}\}_{i j}+\frac{b_{2} b_{81}-b_{3} b_{21}}{b_{3}^{2}}\{\boldsymbol{h e}\}_{i j}=\frac{b_{3}+b_{3}}{b_{3}} e_{i j} \tag{3.11}
\end{equation*}
$$

The abbreviation $\{p q\}_{i j}=p_{i \alpha} q_{\alpha j}+q_{i \alpha} p_{\alpha j}-{ }^{2} /{ }_{3} p_{\alpha \beta} q_{\alpha \beta} \delta_{i j}$ is used here. In deriving (3.11) it tums out to be necessary to impose the following constraints on the coefficients which originate from the condition of disappearance of the spherical parts in (3.11)

$$
\begin{equation*}
2 b_{21}+3 b_{22}=\frac{\lambda_{1}}{2 \mu} b_{2}, \quad 2 b_{31}+3 b_{32}=\frac{\lambda_{1}}{2 \mu} b_{3} \tag{3.12}
\end{equation*}
$$

Utilizing now (3.11) and (3.12) and the same relationships (3.11), (3.4) and (3.9), the expression for the stress $\sigma_{i f}$ (after subtracting the isotropic pressure) can be written as

$$
\begin{gather*}
\sigma_{i j}=\left(b_{1}-\frac{b_{2}^{2}}{b_{3}}\right) e_{i j}+2 \mu\left(1+\frac{b_{2}}{b_{3}}\right) h_{i j}+ \tag{3.13}\\
+\frac{\lambda_{1} b_{3}\left(b_{2}+b_{3}\right)-4 \mu\left(b_{3} b_{31}-b_{3} b_{n 1}\right)}{2 b_{3}^{2}}\{\mathrm{hh}\}_{1 j}+\frac{\lambda_{1}}{3}\left(1+\frac{b_{2}}{b_{3}}\right) h_{\alpha \beta}^{2} \delta_{i j}+ \\
+\left(b_{11}-2 b_{21} \frac{b_{3}}{b_{3}}+b_{31} \frac{b_{2}^{3}}{b_{3}^{3}}\right)\{h e\}_{t j}+\left(b_{12}+\frac{2}{3} b_{11}-\frac{\lambda_{1}}{6 \mu} \frac{b_{2}^{2}}{b_{3}}\right) h_{\alpha \beta} e_{\alpha \beta} \delta_{i j}
\end{gather*}
$$

The obtuined system of (3.11), (3.13) is the governing equations of the medium which connects σ and e by means of the tensor parameter h. According to (2.5) the dissipation in such a model, to the accuracy of terms of two orders in h, will become (isothermal case)

$$
\begin{gather*}
T P_{s}=\left(b_{1}-\frac{b_{2}^{2}}{b_{3}}\right) e_{\alpha, 3}^{2}+\frac{4 \mu^{2}}{b_{3}} h_{\alpha, 3}^{2}+ \tag{3.14}\\
+4 \mu \frac{\lambda_{1} b_{3}-2 \mu b_{31}}{b_{3}^{2}} h_{x_{1}, h} h_{5 \gamma} h_{\gamma \alpha}+2\left(b_{11}-2 b_{21} \frac{b_{3}}{b_{3}}+b_{31} \frac{b_{2}^{2}}{b_{s}^{2}}\right) h_{a} e_{\beta \gamma} e_{\gamma \alpha}
\end{gather*}
$$

Terms with coefficients b_{12}, b_{22}, b_{32} do not enter the expression for the dissipation in the considered incompressible case.

To the same quadratic accuracy as before, the parameter h can be eliminated from (3.11) and (3.13) and the equation connecting σ and \mathbf{e} can be written explicitly

$$
\begin{gather*}
\theta_{1}\left(\frac{\Delta s}{\Delta t}\right)_{i j}+s_{i j}+c_{1}\{\mathbf{s s}\}_{i j}+c_{2}\{\mathbf{s e}\}_{i j}+c_{3} s_{\alpha \beta}^{2} \delta_{i j}+c_{4} s_{x ;} e_{\alpha j} \delta_{i j}+ \\
+c_{s}\{\mathbf{e e}\}_{i j}+c_{8} e_{\alpha \beta}^{2} \delta_{i j}+c_{7}\left\{s \frac{\Delta \mathbf{e}}{\Delta t}\right\}_{i j}+c_{3} s_{\alpha \beta}\left(\frac{\Delta \mathbf{e}}{\Delta t}\right)_{\alpha \beta} \delta_{i j}=2 \eta\left(1-\frac{\theta_{2}}{\theta_{1}}\right) e_{i j} \tag{3.15}\\
s_{i j}=\sigma_{i j}-2 \eta \frac{\theta_{3}}{\theta_{1}} e_{i j}
\end{gather*}
$$

The coefficients $\theta_{1}, A_{2}, \eta, c_{k}$ are expressed in terms of the nine initial coefficients $\mu, \lambda_{1}, b_{1}, b_{2}, b_{3}, b_{11}, b_{12}, b_{21}, b_{31}$. In the particular case when the coefficients of the last two members in (3.13) vanish, then $c_{5}=c_{6}=c_{7}=c_{8}=0$ and the seven coefficients in (3.15) are expressed in terms of the seven original coefficients.

It is interesting to compare (3.15) with the equations of the Oldroyd eight-constant model [17]. Eqs. (3.15) possess a number of evident differences from the Eqs. in [17], for example, there are nonlinear terms in the stresses and terms with products of the stresses by the acceleration in (3.15). Moreover, despite the high arbitrariness in selecting the constants, (3.15) do not actually contain many particular cases admitted by the Oldroyd equations. Thus, by virtue of the existing relations between the coefficients c_{k} and $b_{k l}$ it is impossible to obtain the equations of the "covariant" and "contravariant" models introduced by Oldroyd [10] from (3.15).

The exposition is here conducted under the assumption of isothermy. If there is a nonuniform temperature distribution T in the medium, this then results in the occurrence of a thermal flux q_{i};

$$
\begin{equation*}
q_{i}=-\left(x_{0} \delta_{i \alpha}+x_{1} h_{i \alpha}\right) \nabla \alpha T \tag{3.16}
\end{equation*}
$$

The dependence of the heat conduction coefficient x on the reversible strain h is taken into account in (3.16) in a linear approximation. The infleence of the strain results in a deformational anisotropy of the heat conduction process even in a medium with isotropic structure. It is interesting that such a situation should concern not only solids but also elastic fluids. Analogously also for the diffusion process.

Let us now consider some particular cases admitted by the model Eqs. (3.11) and (3.13).
In the case of a linear connection between the "elastic stresses" and the reversible strains ($\lambda_{1}=0$), and if in addition we set $b_{12}=-4 / 3 b_{11}$, equations of the same kind as in [18] are obtained. According to [18], the flow of weakly concentrated suspensions of slightly deformable elastic particles in a viscous fluid is described by such equations(*). It is easy to obtain equations in the same form as in [18], directly from (3.1), (3.4) and (3.9)

$$
\begin{equation*}
\left(\frac{\Delta \mathbf{h}}{\Delta t}\right)_{i j}+\frac{2 \mu}{b_{3}} h_{i j}=\left(1+\frac{b_{3}}{b_{3}}\right) \boldsymbol{e}_{i j}+\frac{b_{21}+b_{32}}{b_{3}}\{\mathbf{h e}\}_{i j}-b_{91}\left\{\mathbf{h} \frac{\Delta \mathbf{h}}{\Delta t}\right\}_{i j} \tag{3.17}
\end{equation*}
$$

*) Let as note that the specific numarical values for the coefficients in the equations from [18] do not agree with the possible values of the coefficients in (3.17).

$$
\begin{array}{r}
\sigma_{i j}=\left(b_{1}+2 b_{2}+b_{3}\right) e_{i j}-\left(b_{2}+b_{3}\right)\left(\frac{\Delta \mathbf{h}}{\Delta t}\right)_{1 j}+ \\
+\left(b_{11}+2 b_{21}+b_{31}\right)\{h e\}_{i j}-\left(b_{21}+b_{31}\right)\left\{\mathbf{h} \frac{\Delta \mathbf{h}}{\Delta t}\right\}_{i j}
\end{array}
$$

Since these equations have been obtained approximately both here and in [18], there is no special reason for keeping them in the form (3.17), and the first equation can be solved approximately for $\Delta \mathrm{h} / \Delta t$ and it is possible to go over to Eqs. of the form (3.11) and (3.13). In this case $c_{3}=c_{4}=c_{6}=c_{8}=0$ in Eqs. of the form (3.15).

If we add $b_{31}\left(b_{2}+b_{3}\right)=b_{3} b_{21}-b_{2} b_{31}=\left(b_{3} b_{11}-b_{2} b_{21}\right) b_{3} / b_{2}= \pm 4 / 3(1+\varepsilon) b_{3}{ }^{2}$ to the previous assumptions about the coefficients ($\lambda_{1}=0, b_{12}=-2 / 3 b_{11}$), we thereby arrive at the model equations discussed in detail by Bird et al. (for example, [19] and [20])

$$
\begin{equation*}
\theta_{1}\left(\frac{\Delta s}{\Delta t}\right)_{i j} \mp \theta_{1}(1+\varepsilon)\{\mathbf{s e}\}_{i j}+s_{i j}=2 \eta\left(1-\frac{\Gamma \theta_{2}}{\theta_{1}}\right) e_{i j}, s_{i j}=\sigma_{i j}-2 \eta \frac{\theta_{3}}{\theta_{1}} e_{i j} \tag{3.18}
\end{equation*}
$$

The peculiarity of this model is that the terms \{se\} vanish in the case of a Maxwell type model ($\sigma_{i j}=\sigma_{i j}{ }^{\circ}$) while the formal equality $\theta_{2}=0$ does not affect these terms (for $\theta_{2}=0$, Eq. (3.18) describes only stress relaxation, which is customarily associated with Maxwell type models). The reason is that $b_{21} \neq 0$ for $b_{1}=b_{2}=0\left(\theta_{2}=0\right)$ by virtue of the constraints imposed earlier on the coefficients, and therefore, $\sigma_{i j} \neq \sigma_{i j}{ }^{\bullet}$ because of the nonlinear terma. Another peculiarity is that in such a model $\sigma_{a \alpha}=0$ in one-dimensional steady-state shear flows. It is possible to branch off easily from this by considering $b_{12} \neq-4 / 3 b_{11}$, then spherical terms of the form

$$
e_{\alpha \beta}^{2} \delta_{i j}, e_{\alpha \beta}^{1} s_{\alpha \beta} \delta_{i j}, s_{\alpha \beta}(\Delta \mathrm{e} / \Delta t)_{\alpha \beta} \delta_{i j}
$$

will appear in the equations.
For the model with Eqs. (3.18) with $T=$ const, the expression for entropy production to the accuracy of terms of two orders is

$$
\begin{equation*}
T P_{s}=2 \eta \frac{\theta_{3}}{\theta_{1}} e_{\alpha \beta}^{2}+\frac{\theta_{1}}{2 \eta\left(\theta_{1}-\theta_{3}\right)} s_{\alpha \beta}^{2} \mp \frac{(1+\varepsilon) \mu}{\eta^{3}\left(\theta_{1}-\theta_{3}\right)^{2}} s_{\alpha \beta} s_{\beta \gamma} s_{\gamma \alpha} \tag{3.19}
\end{equation*}
$$

Let us consider another kind of particular case when nonlinear members with \{hh\} and \{he\} drop out of Eq. (3.11) for h, i.e., when $b_{31}=b_{3} \lambda_{1} / 4 \mu, b_{21}=b_{2} \lambda_{1} / 4 \mu$ (by virtue of (3.12) this is equivalent to the requirement that $b_{22}=b_{32}=0$). The equations of the model become

$$
\begin{gather*}
\left(\frac{\Delta \mathbf{h}}{\Delta t}\right)_{i j}+\frac{2 \mu}{b_{3}} h_{i j}=\left(1+\frac{b_{2}}{b_{3}}\right) e_{i j} \tag{3.20}\\
\sigma_{i j}=\left(b_{1}-\frac{b_{2}{ }^{2}}{b_{3}}\right) e_{i j}+2 \mu h_{i j}+\lambda_{1}\left(1+\frac{b_{2}}{b_{3}}\right) h_{i \alpha} h_{\alpha j}+ \\
+\left(b_{11}-\frac{\lambda_{1} b_{2}{ }^{2}}{4 \mu b_{3}}\right)\left(h_{i \alpha} e_{\alpha j}+e_{i \alpha} h_{\alpha j}\right)+b_{13} h_{\alpha \beta} e_{\alpha \beta} \delta_{i j}
\end{gather*}
$$

In this case ($T=$ const) the dissipation is

$$
\begin{equation*}
T P_{s}=\left(b_{1}-\frac{b_{2}^{2}}{b_{3}}\right) e_{\alpha \beta}^{2}+\frac{4 \mu^{2}}{b_{3}} h_{\alpha \beta}^{2}+\frac{2 \mu \lambda_{1}}{b_{3}} h_{\alpha \beta} h_{\beta \gamma} h_{\gamma \alpha}+2\left(b_{11}-\frac{\mid \lambda_{1} b_{2}^{2}}{4 \mu b_{3}}\right) h_{\alpha \beta} e_{\beta \gamma} e_{\gamma \alpha} \tag{3.21}
\end{equation*}
$$

For $b_{12}=0, b_{11}=\lambda_{1} b_{2}{ }^{2} /\left(4 \mu b_{3}\right)$ Eqs. (3.20) reduce to equations for $e_{j f}$ and $s_{i j}=\sigma_{i j}$ -$-\left(b_{1}-b_{2}^{2} / b_{3}\right) e_{i j}$:

$$
\begin{align*}
\left(\frac{\Delta s}{\Delta t}\right)_{i j}-\frac{\lambda_{1}}{2 \mu} & \left(1+\frac{b_{3}}{b_{3}}\right)^{2}\left(s_{i \alpha} e_{\alpha j}+e_{i \alpha} s_{\alpha j}\right)+ \tag{3.22}\\
& +\frac{2 \mu}{b_{g}} s_{i j}+\frac{\lambda_{1}}{2 \mu b_{3}}\left(1+\frac{b_{9}}{b_{\mathrm{g}}}\right) s_{i \alpha} s_{\alpha j}=\left(1+\frac{b_{9}}{b_{\mathrm{g}}}\right) e_{i j}
\end{align*}
$$

Here the case $b_{2}=0, s_{i j}=\sigma_{i j}$ corresponds to a model of Maxwell type $\left(\sigma_{i j}=\sigma_{i j}{ }^{\bullet}\right.$), i.e., is described by equations of the ame type.

Utilizing the concept of the Janmann integral (see Section 5), we may pase from a differ
ential to a fanctional description of the model equations.
Than, Eqa. (3.20) are "solved" an followe (for simplicity we set $b_{12}=0, b_{11}=\lambda_{1} b_{2}^{2}$ / ($4 \mu b_{3}$):

$$
\begin{gather*}
h_{i j}(t)=\left(1+\frac{b_{2}}{b_{3}}\right) \int_{-\infty}^{t_{t}}\left[\mathrm{e}\left(t^{\prime}\right)\right]_{i j} \\
\sigma_{i j}(t)=\left(b_{1}-\frac{b_{9}{ }^{2}}{b_{8}}\right) e_{i j}(t)+2 \mu\left(1+\frac{b_{9}}{b_{8}}\right) \int_{-\infty}^{t_{3}}\left[\mathrm{e}\left(t^{\prime}\right)\right]_{i j}+ \tag{3.23}\\
+\lambda_{1}\left(1+\frac{b_{3}}{b_{3}}\right)^{2} \int_{-\infty}^{t_{0}}\left[\mathrm{e}\left(t^{\prime}\right)\right]_{i a} \int_{-\infty}^{t_{0}}\left[\mathrm{e}\left(t^{n}\right)\right]_{\alpha j}
\end{gather*}
$$

Hare the notation

$$
\int_{-\infty}^{T_{t}}\left[\mathrm{e}\left(t^{\prime}\right)\right]_{i j}=\int_{-\infty}^{t} \varphi_{i \alpha}\left(t, t^{\prime}\right) e_{\alpha \beta}\left(t^{\prime}\right) \varphi_{\beta j}\left(t^{\prime}, t\right) \exp \left[-\frac{2 \mu}{b_{3}}\left(t-t^{\prime}\right)\right] d t
$$

has been introduced for the Jaummon integral, where ϕ is the matrizent, which satisfies Eq.

$$
d \varphi_{i j}\left(t, t^{\prime}\right) / d t=\omega_{i \alpha}(t) \varphi_{\alpha j}\left(t, t^{\prime}\right), \quad \varphi_{i j}\left(t^{\prime}, t^{\prime}\right)=\delta_{i j}
$$

in the case of Cartesian coordinates.
The model equationa in the form (3.23) are analogons to the expansions of hereditary functionals in functional series atilized in the literature (see e.g. [1]). In addition to (3.23) it is not difficult to write an expression for the dissipative functional by using (3.21).

Up to now the expomition has relied on linear TIP relationships in the fluxes and forces. However, it is eary to see that taking account of the next terms, quadratic in the forces (flaxes), will not introdace additional difficalties but will just increase the arbitrariness of the coefficiants. The now feature of the equations will just be the fact that terms of the \{ee $\}_{1 j}$ type will even occur in the equation for $h_{i t}$ (compare with (3.11)). On the other hand, one "themodynemic nonlinearity" in the linearized kinematic relationmhip of the quadratic intemal energy and conetent kinetic coefficiente may result in a set of models with equations analogone to (3.11) and (3.13).

As an illantration, let as consider the case when the whole nonlinearity is due to the violation of the cronsed symmetry between two phenomena (although the Onsager relationahipa are valid). Now, let (2.6) and (2.8) be replaced by

$$
\begin{equation*}
\sigma_{i j}-i \sigma_{i j}^{:}=b_{2} e_{i j}+b_{3} e_{i j}+d_{2}\left\{e^{p} e^{p}\right\}_{t j}+d_{2} e_{a \beta}^{p g} \delta_{i j}, \sigma_{i j}^{e}=2 \mu h_{i j}=b_{2} e_{i j}+d_{8}\{e e\}_{i j}+b_{2} e_{i j}^{p} \tag{3.24}
\end{equation*}
$$

For implicity, let ua set $b_{2}=0$, in this case taking account of the nonlinear terme is particularly necessary. Retuining only terme of two ordern, by using $e p_{=} e-\Delta h / \Delta t$, Eq. (3.24) is easily trunsformed into

$$
\begin{gather*}
\left(\frac{\Delta h}{\Delta t}\right)_{t j}+\frac{\mathrm{T}}{\theta_{2}} h_{i j}=e_{i j}+\frac{d_{\mathrm{s}}}{\mu \theta_{2}}\{e \mathrm{e}\}_{i j} \\
\sigma_{i j}=2 \eta \frac{\theta_{2}}{\theta_{1}} e_{i j}+2 \mu h_{i j}+\frac{2 d_{1}}{\theta_{1}^{2}}\{\mathrm{hh}\}_{i j}+\frac{d_{z}}{\theta_{2}^{2}} h_{\alpha \beta}^{3} \delta_{i j}, \tag{3.25}
\end{gather*}
$$

where $\theta_{1}-\theta_{2}=\theta_{1}{ }^{2} \mu / \eta$ in this case.
With the amme two onder accuracy, we have for the disaipation ($T=$ const)

$$
T P_{s}=2 \eta \frac{\theta_{3}}{\theta_{1}} e_{\alpha \beta}^{2}+\frac{2 \mu}{\theta_{1}} h_{\alpha \beta}^{2}+\frac{2 d_{1}}{\theta_{1}^{2}} h_{\alpha \beta} h_{\beta \gamma} e_{\gamma \varepsilon}-\frac{2 d_{3}}{\theta_{1}} e_{\alpha \beta} e_{\beta \gamma} h_{\gamma \alpha}
$$

In concluding the Section, let ne eatimate the role of the nonlinearity in the kinematic relationchip. When we may limit onenolf to terme of three orders in the kinematic relationchip, while the reat of the reletionehipa are conaidered linear, the goveming equations will become

$$
\begin{align*}
& \left(\frac{\Delta s}{\Delta t}\right)_{i j}+\frac{2 \mu}{b_{3}} s_{i j}+\frac{b_{9}-2 b_{3}}{12 \mu\left(b_{2}+b_{3}\right)}\left(s_{i \alpha} s_{\alpha \beta} e_{\beta j}-2 s_{i \alpha} e_{a \beta} s_{\beta j}+\right. \\
& \left.+e_{i \alpha} s_{\alpha \beta} s_{\beta j}\right)=\left(1+\frac{b_{2}}{b_{3}}\right) e_{i j}, \quad s_{i j}=\sigma_{i j}-\left(b_{1}-\frac{b_{3}^{2}}{b_{3}}\right) e_{i j} \tag{3.26}
\end{align*}
$$

A comparison of predictions of a model with complete kinematic nonlinearity and a model with a "linearized" kinematic relationship will be made later in a simple shear flow example. We consider the medium incompressible, and all the remaining relationships linear (for example, $\sigma_{i j}{ }^{\circ}=2 \mu h_{i j}$).

The problem of stationary shear flow with shear velocity y *hence reduces to the solution of the matrix Eqs. (see (1.11))

$$
\begin{gather*}
\frac{2}{\theta_{1}} h-2 \frac{b_{2}}{b_{3}} e=\exp (-h)[e-\omega] \exp (h)+\exp (\mathbf{h})[\mathbf{e}+\omega] \exp (-\mathbf{h}) \tag{3.27}\\
\sigma=2 \eta \frac{\theta_{2}}{\theta_{1}} e+2 \mu\left(1+\frac{b_{2}}{b_{3}}\right) \mathbf{h}
\end{gather*}
$$

In the case under consideration the matrices $\mathrm{e}, \boldsymbol{\omega}, \mathrm{h}$ are

$$
\mathbf{e}=\frac{1}{2} \gamma^{(}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \omega=\frac{1}{2} r \cdot\left(\begin{array}{rr}
0 & -\mathbf{1} \\
1 & 0
\end{array}\right), \quad \mathbf{h}=\left(\begin{array}{lr}
h_{11} & h_{12} \\
h_{13} & -h_{11}
\end{array}\right)
$$

In order to solve the first matrix equation for the matrix h, let us perform a similarity transformation such that the matrix h would reduce to the diagonal formi

$$
\mathbf{q}^{-1} \mathrm{hq}=\left(\begin{array}{rr}
a & 0 \\
0 & -a
\end{array}\right)
$$

In the cansidered case $h_{\alpha \alpha}=0, h_{\alpha \beta}{ }^{2}=2\left(h_{1^{2}}+h_{12^{2}}\right)=2 a^{2}, h_{\alpha \beta} h_{\beta \gamma} h_{\gamma \alpha}=0$. Introducing new unknowns a and ϕ in place of h_{11}, h_{12} by setting $h_{11}=a \cos \phi h_{12}=a \sin \phi$, it is easy to see that the m atrix q is hence an orthogonal rotation matrix

$$
q=\left(\begin{array}{lr}
\cos 1 / 2 \varphi & -\sin 1 / 2 \varphi \\
\sin ^{1 / 2} \varphi & \cos 1 / 2 \varphi
\end{array}\right)
$$

and the matrix equation reduces to two transcendental Eqs.

Fig. 1

$$
\begin{array}{r}
2 a=\Gamma(1+k) \sin \varphi \\
\operatorname{sh} 2 a=(\operatorname{ch} 2 a+k) \cos \varphi \tag{3.28}
\end{array}
$$

Here $\Gamma=\theta_{1} y^{\prime}$ and $k=b_{2} / b_{3}$ are nondimenaional parameters. The parameter k is expressed in terms of the dimensional constants $\eta, \mu, \theta_{1}, \theta_{2}$:

$$
(1+k)^{2}=\frac{\eta}{\mu \theta_{1}}\left(1-\frac{\theta_{2}}{\theta_{1}}\right)
$$

The components of the elastic deformation and stress tensors may be expressed in terms of the parameter a as follows:

$$
\begin{gather*}
h_{11}=\frac{a \operatorname{sh} 2 a}{\operatorname{ch} 2 a+k}, \quad h_{23}=\frac{2 a^{2}}{\Gamma(1+k)} \\
\sigma_{11}=2 \mu(1+k) \frac{a \operatorname{sh} 2 a}{\operatorname{ch} 2 a+k} \\
s_{12} \equiv \sigma_{12}-\frac{\eta \theta_{2}}{\theta_{1}^{2}} \Gamma=4 \mu a^{2} \Gamma^{-1} \tag{3.29}
\end{gather*}
$$

The dependence of the parameter a on Γ and k is found from (3.28).

The linearized kinematic relationship for the problem being solved is

$$
\omega \mathbf{h}^{\circ}-\mathbf{h}^{\circ} \omega+\mathbf{h}^{\circ} / \theta_{\mathbf{l}}=(1+k) \mathbf{e}
$$

and in this case it is easy to write an explicit expression for a°, and hence, for σ°

$$
\begin{equation*}
a^{\circ}=\frac{(1+k) \Gamma}{2 \sqrt{1+\Gamma^{2}}}, \quad \sigma_{11}^{\circ}=\frac{\mu(1+k)^{3} \Gamma^{3}}{1+\Gamma^{2}}, \quad s_{12}^{\circ}=\frac{\sigma_{11}{ }^{\circ}}{\Gamma} \tag{3.30}
\end{equation*}
$$

Comparison of the solution (3.29), (3.30) is made graphically. Pictured in Figs. 1-3 are de-

Fig. 2

Fig. 3
pendences of the nondimensional quantities $x=2 a, f_{1}=s_{12} / \mu, f_{2}=\sigma_{11} / \mu$ and the corresponding quantities $x^{\circ}, f_{1}, f_{2}{ }^{\circ}$ on the parameter Γ for several numerical values of the parameter k. It is seen from the graphs that larger elastic deformations in the fluid correspond to larger values of the parameter k (for the same Γ); the functions f_{1} and $f_{1}{ }^{\circ}$ have one maximum each (in order for $\sigma_{12}^{\circ}(\Gamma)$ to be monotonous here it is necessary that $\theta_{2}>\theta_{1} / 9$), down to $\Gamma \approx 1$ the theory with the linearized kinematic relationship yields an error not exceeding 10%, howe ver the error grows rapidly for large values of Γ.
4. Model with many relaxation times: Viscoelastic spectra. Let us consider an element of fluid which consists of N subsystems. The elastic deformation of the k-th subsyatem is described by the tensor $h^{(k)}$ and the irreversible strain rate by $\mathbf{e}^{p(k)}$. The preceding analysis can be extended to this more general case exactly as is done in linear viacoelasticity [4 and 21]. A sufficiently simple case is considered below. We write the internal energy to the accuracy of cubic terms in h and the linearized kinematic relationship as

$$
\begin{gather*}
\rho_{0} u=\rho_{0} u_{0}+\sum_{k} \mu_{k} h^{(h)} \cdots h^{(L)}+\sum_{k, l} \lambda_{k l} h^{(k)} \cdot h^{(L)} \ldots!^{(l)} \tag{4.1}\\
\frac{\Delta \mathbf{h}^{(k)}}{\Delta t}+\mathbf{e}^{p(h)}=\mathbf{e}, \quad \lambda_{k l}=\lambda_{l k}, \quad \mathbf{h} \cdot \mathbf{h}=h_{i \alpha^{2}} \tag{4.2}
\end{gather*}
$$

Sach expremions may be obtained from the more general case by reduction to normal coordinates (see [4 and 21]).

The expreasion for entropy production ($T=$ const) can be written an

$$
\begin{gather*}
T P_{s}=\left[\sigma-\sum_{k} \sigma(k)\right] \cdots e+\sum_{k} \sigma(k) \cdots \mathrm{e}^{p(k)} \tag{4.3}\\
\sigma(k)=2 \mu_{k} h^{(k)}+\sum_{l} \lambda_{k l}\left[2 h^{(k)} h^{(l)}+h^{(l)} h^{(l)}\right] \tag{4.4}
\end{gather*}
$$

Henceforth, the aimple case of a Maxwoll type model ie considered when

$$
\begin{equation*}
\theta=\sum_{k} \sigma^{e(k)}, \quad h^{(k)}=\theta_{k} \mathrm{e}^{p(k)}, \quad \theta_{k}>0 \tag{4.5}
\end{equation*}
$$

Eqs. (4.2) and (4.5) may be solved for $h^{(k)}$ by using Jaumann integration (Section 5 and [22])

$$
h_{i j}^{(2 .)}(t)=\int_{-\infty}^{t} \exp \left(-\frac{t-t^{\prime}}{\theta_{k}}\right)\left[\mathrm{e}\left(t^{\prime}\right)\right]_{i j}
$$

Substitating $\mathbf{h}^{(k)}$ into the expression for $\sigma^{*(k)}$ and taking account of (4.5) we obtain

$$
\begin{equation*}
\sigma_{i j}(t)=2 \int_{-\infty}^{t} \psi_{0}\left(t-t^{\prime}\right)\left[\mathrm{e}\left(t^{\prime}\right)\right]_{i j}+2 \int_{-\infty}^{t} \int_{-\infty}^{t} \psi_{1}\left(t-t^{\prime}, t-t^{\prime \prime}\right)\left[\mathrm{e}\left(t^{\prime}\right)\right]_{i \alpha}\left[\mathrm{e}\left(t^{\prime \prime}\right)\right]_{a j} \tag{4.6}
\end{equation*}
$$

We have here introduced the notation

$$
\begin{gathered}
\psi_{0}(t)=\sum_{k=1}^{N} \mu_{k} \exp \left(-\frac{t}{\theta_{k}}\right) \\
\psi_{1}\left(t, t^{\prime \prime}\right)=\sum_{k, l=1}^{N} \lambda_{k l}\left[\exp \left(-\frac{t^{\prime}}{\theta_{k}}-\frac{t^{\prime \prime}}{\theta_{l}}\right)+\frac{1}{2} \exp \left(-\frac{t^{\prime}+t^{\prime \prime}}{\theta_{k}}\right)\right]
\end{gathered}
$$

In order to pass from the discrete to the continuous relaxation-time spectrum, it is only necessary to replace the summation by integration, and the coefficienta μ_{k}, $\lambda_{l_{k}}$ by the apectral relaxation functions $\mu(\theta), \lambda\left(\theta_{1}, \theta_{2}\right)=\lambda\left(\theta_{2}, \theta_{1}\right)$.

Let us consider the behavior of such a model medium for simple kinds of flows.
Quasistationary Couette Flow Mode with Instantaneous Inclusion of the Strain Rate. In this case

$$
\mathrm{e}=\frac{1}{2} \gamma^{\cdot} H(t)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \omega=\frac{1}{2} \gamma^{2} H(t)\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Here y is a constant shear rate, $H(t)$ the Heaviside unit function, which equals zero for $t<0$ and 1 for $t>0$.

The matrizant $\phi\left(t, t^{\prime}\right)$ which should satisfy Eq.

$$
\frac{\partial}{\partial t} \varphi\left(t, t^{\prime}\right)=-\omega \varphi\left(t, t^{\prime}\right), \quad \varphi\left(t^{\prime}, t^{\prime}\right)=\mathrm{I}
$$

is foumd easily to have the form

$$
\Phi\left(t, t^{\prime}\right)=\left(\begin{array}{ccc}
\cos 1 / 2 \gamma^{\circ}\left(t-t^{\prime}\right) & -\sin 1 / 2 \gamma^{*}\left(t-t^{\prime}\right) & 0 \\
\sin 1 / 2 \gamma^{\prime}\left(t-t^{\prime}\right) & \cos 1 / 2 \gamma^{\circ}\left(t-t^{\prime}\right) & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and is a matrix of rotation through the angle $1 / 2 y^{\prime \prime}\left(t-t^{\prime}\right)$.
The stress tensor components (less the pressure) may be expressed in terms of the spectral functions an follows:

$$
\begin{align*}
& \sigma_{12}=\int_{0}^{\infty} \mu(\theta) \frac{\theta \gamma^{*} u(t, \theta)}{1+\theta^{2} \gamma^{-2}} d \theta, \quad \sigma_{22}-\sigma_{11}=-2 \int_{0}^{\infty} \mu(\theta) \frac{\theta^{2} \gamma^{-2} v(t, \theta)}{1+\theta^{2} \gamma^{-3}} d \theta \tag{4.7}\\
& \sigma_{11}=\int_{0}^{\infty} \mu(\theta) \frac{\theta^{2} \gamma^{2} v(t, \theta)}{1+\theta^{2} \gamma^{-2}} d \theta+\frac{1}{4} \int_{0}^{\infty} \beta(\theta) \frac{\theta^{2} \gamma^{2}\left[\theta^{2} \gamma^{2} v^{2}(t, \theta)+u^{3}(t, \theta)\right]}{\left(1+\theta^{2} \gamma^{2}\right)^{3}} d \theta+ \\
& +\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \lambda\left(\theta_{1}, \theta_{3}\right) \frac{\theta_{1} \theta_{3} \gamma^{-2}\left[\theta_{1} \theta_{2} \gamma^{-2} v\left(t, \theta_{1}\right) v\left(t, \theta_{2}\right)+u\left(t, \theta_{1}\right) u\left(t, \theta_{2}\right)\right]}{\left(1+\theta_{1}^{2} \gamma^{-2}\right)\left(1+\theta_{2}^{2} \gamma^{-2}\right)} d \theta_{1} d \theta_{3}
\end{align*}
$$

where we have introduced the notetion

$$
\begin{gather*}
\beta(\theta)=\int_{0}^{\infty} \lambda(\theta, \tau) d \tau^{t} \tag{4.8}\\
u(t, \theta)=1-\exp \left(-\frac{t}{\theta}\right)\left(\cos \gamma^{*} t-\gamma^{\cdot} \theta \sin \gamma^{\prime} t\right) \\
v(t, \theta)=1-\exp \left(-\frac{t}{\theta}\right)\left(\cos \gamma^{*} t+\frac{1}{\gamma^{\prime} \theta} \sin \gamma^{*} t\right)
\end{gather*}
$$

It follows from (4.7) and (4.8) that both the normal and the tangential stresses have damped oscillations upon emergence into the steady flow regime. The first maximum of the tan* gential stress is the largest and has the value:

$$
\max J_{12}=\int_{0}^{\infty} \mu(\theta) \frac{\theta \gamma^{*}}{1+\theta^{2} \gamma^{2}}\left[1+\exp \left(-\frac{\pi}{2 \theta \gamma^{*}}\right)\right] d \theta
$$

Let us note that apparently such oscillations were observed experimentally in the polymer rheology laboratory of the Institute of Petrochemical Synthesis AN SSSR by G.V. Vinow gradov and A.Ia. Malkin.

Formulas (4.7) and (4.8) simplify in the limit $t \rightarrow \infty$

$$
\begin{align*}
\sigma_{12}= & \int_{0}^{\infty} f(\theta) \frac{\theta \gamma^{*}}{1+\theta^{2} \gamma^{2}} d \theta, \sigma_{11}-\sigma_{2 g}=2 j_{0}^{\infty} \mu(\theta) \frac{\theta^{2} \gamma^{\cdot 2}}{1+\theta^{2} \gamma^{22}} d \theta \tag{4.9}\\
\sigma_{11}= & \int_{0}^{\infty} \mu(\theta) \frac{\theta^{2} \gamma^{\cdot 2}}{1+\theta^{2} \gamma^{2}} d \theta+\frac{1}{4} \int_{0}^{\infty} \beta(\theta) \frac{\theta^{2} \gamma^{\cdot 2}}{1+\theta^{2} \gamma^{\cdot 2}} d \theta+ \\
& +\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \lambda\left(\theta_{1}, \theta_{2}\right) \frac{\theta_{1} \theta_{2} \gamma^{2}\left(1+\theta_{1} \theta_{2} \gamma^{2}\right)}{\left(1+\theta_{1}^{2} \gamma^{2}\right)\left(1+\theta_{2}^{2} \gamma^{\cdot 2}\right)} d \theta_{1} d \theta_{2}
\end{align*}
$$

The dependence of the effective viscosity $\eta^{\circ}\left(y^{*}\right)=\sigma_{12}\left(y^{*}\right) / \gamma^{*}$ agrees with the dynamic viscosity $\eta^{\prime}(\omega)$ (determined in the linear theory of viscoelasticity) for $\gamma^{*} \rightarrow \omega$. The quantities σ_{11} and σ_{22} in (4.9) are not equal, and are quadratic for small γ^{*} as $\gamma^{*} \rightarrow 0$. It is interesting to note that the anharmonic tems do not yield a contribution to the tangential stresses in simple one-dimensional flows of the considered medium. The difference $1 / 2\left(\sigma_{11}-\right.$ $-\sigma_{22}$) agrees with the real part of the dynamic modulus $G^{\prime}(\omega)$ as $\gamma^{\prime} \rightarrow \omega$. The agreement between η° and $\eta^{\prime}, 1 / 2\left(\sigma_{11}-\sigma_{22}\right)$ and G^{\prime} has been discussed repeatedly in the rheological literature (see [19, 20 and 23], for example).

Let us consider yet another simple experiment on whose basis the functions $\sigma_{11}\left(\gamma^{*}\right)$ and $\sigma_{22}\left(y^{*}\right)$ may be estimated. Let a viscoelastic fluid move stationarily in the narrow gap of a rotating cone-plane device customarily utilized for rheological investigations. Then, as is easy to show for this case, the tangential and normal stress distribution is
$p_{\phi \varphi}-p+\sigma_{11}\left(\gamma^{\circ}\right), \quad p_{\theta \theta}=-p+\sigma_{2 g}\left(\gamma^{\circ}\right), \quad p_{r r}=-p, \quad p_{\theta \varphi}=\sigma_{19}\left(\gamma^{\circ}\right), \quad p_{r \varphi}=p_{r \theta}=0$
Here the quantities $\sigma_{j j}\left(y^{\circ}\right)$ are defined in (4.9). From the equilibrium equations we have a simple equation for the distribution of the isotropic pressure over the radius of the device (the fact that the angular gap is small is used here)

$$
\frac{\partial p}{\partial r} \approx \frac{1}{r}\left(2 p_{r r}-p_{i \varphi}-p_{\theta \theta}\right)=-\frac{\sigma_{11}+\sigma_{32}}{r}
$$

Integrating this equation while taking into account that there is a free surface for $r=R$ on which $p_{r r}=0$, we obtain

$$
\begin{equation*}
p=\left(\sigma_{11}+\sigma_{22}\right) \ln (R / r) \tag{4.11}
\end{equation*}
$$

Evaluating the axial pressure according to (4.10) and (4.11), we find

$$
\begin{equation*}
Q=2 \pi \int_{0}^{R} p_{\theta \theta} r d r=-\frac{\pi}{2} R^{2}\left(\sigma_{\mathbf{N L}_{1}}-\sigma_{\pi 1}\right) \tag{4.12}
\end{equation*}
$$

According to [24], results of experiments show that $\sigma_{11}>\sigma_{22}$ and $\sigma_{11} \sim \sigma_{22}$. The latter inequality corresponds to the constraint $\lambda\left(\theta_{1}, \theta_{2}\right)>0$ on the binary relaxation function λ.

Let us note yet another curions fact. The results of many normal stress tests (including those in [24]) convincingly show a logarithmic pressure distribation over the radius in the cone-plane device. These tests thereby (see (4.11)) show the inapplicability of rheological models in which the two-dimensional tensor $\sigma_{i f}$ is a deviator in simple shear flow, for the description of normal stresses (such a situation arises particularly if anharmonic terms in (4.1) are neglected).

Let us now examine steady flow with simple tension of a film of viscoelastic fluid.
Let there be the following velocity distribution in the liquid film (x is the motion dirsetion, y the transverse coordinate)

$$
v_{x}=\gamma^{\prime} x, \quad v_{y}=\gamma^{\prime} y \quad\left(\gamma^{\prime}=\text { const }\right)
$$

The strain rate tensor has the form

$$
e=r \cdot\left(\begin{array}{rr}
1 & 0 \tag{4.43}\\
0 & -1
\end{array}\right)
$$

In this case the vorticity tensor is evidently $\omega=0$ and the matrizant is $\phi_{1 f}=\delta_{i f}$. On the basis of (4.6) and (4.13) we have

$$
\begin{equation*}
\sigma=2 \eta e+2 v \mathrm{e}^{2}, \quad \eta=\int_{0}^{\infty} \psi_{0}(t) d t, \quad v=\int_{0}^{\infty} \int_{0}^{\infty} \psi_{1}\left(t^{\prime}, t^{\prime \prime}\right) d t^{\prime} d t^{n} \tag{4.14}
\end{equation*}
$$

Formula (4.14) shows that Trouton viscosity, defined by means of $\sigma_{x x}$, grows with increasing γ°, which also corresponds qualitatively with experiment.

By virtue of the evident approximate nature of the obtained equations, the description of the normal stresses, non-Newtonian viscosity, etc., by such governing equations as in Sections 3 and 4, can claim only qualitative agreement with experiment although they are good enough for some materials (for instance, polymer solutions, see [19, 20, 23, and 24]).

Moreover, the viscoelasticity theory constracted in this Section is based on the relationships (4.1) and (4.2), which are constrained by sufficient smallness of the elastic deformations. If the value of the mean elastic deformation is characterized by the parameter $\Gamma=\langle\theta$ γ_{0}°, where $\langle\mathcal{}\rangle$ is some relaxation time averaged over the spectrum, and y_{0}° is the characteristic shear rate, then the domain of applicability of the constructed theory is bounded by the inequality $\Gamma<1$. Since the values of $\langle\theta\rangle$ may be sufficiently large for polymer melts and concentrated solutions, the domain of applicability of the theory actually turns out to be bounded by values of sufficiently small γ°. Reversible ruptures in the atructure, thixotropy [25], may, in addition to the geometric nonlinearity noted above, give a substantial contribution to the phenomenon of the viscosity anomaly in viscoelastic media of the polymer melt type. Taking account of thixotropic effects in viscoelastic media can be done within the framework of formal thermodynamics of irreversible processes by following the ideas of [25], however, this is outside the scope of the present paper.
5. Appendix. On the Jaumann integral. Let x^{k} be an arbitrary fixed coordinate system; let $A_{k}{ }^{i}, B_{k}{ }^{i}$ be some second rank tensors with mixed indices obtained from the symmetric ten sors $A_{i k}$, $B_{i k}$ by the operation of raising the index. Let the tensor $B_{k}{ }^{i}$ be given. Let us examine the equation in $A_{k}{ }^{1}$:

$$
\begin{equation*}
\left(\frac{\Delta A}{\Delta t}\right)_{k}^{i}=\frac{\partial A_{k}^{i}}{\partial t}+v^{\alpha} \nabla_{\alpha} A_{k}^{i}+\omega_{a}^{i} A_{k}^{\alpha}-A_{\alpha}^{i} \omega_{k}^{\alpha}=B_{h}^{i}, 2 \omega_{k}^{i}=\nabla_{k} v^{i}-\nabla^{i} v_{k} \tag{5.1}
\end{equation*}
$$

Here $\omega_{k}{ }^{i}$ is the vorticity tensor, ∇_{a} the operation of covariant differentiation. Let us find the solation of this equation for a given velocity vector $v^{\prime}=v^{\boldsymbol{t}}\left(x^{k}, t\right)$ and some initial
condition $A_{k}^{\prime}=C_{k}^{i}$ at $t=t_{0}$. Here $C_{k}^{\prime}\left(x^{\text {nt }}\right)$ is some tensor independent of the time t.
Such a problem of inverting the Jaumann derivative (i.e., the problem of constructing the Jaumann integral) was considered schematically in [22].

The complete solution of (5.1) will be considered here by using a generalization of the method in]22] and the solution of an analogovs problem in a frozen Lagrangean system of coordinates ξ^{k}. Let us consider the solution of the problem in a fixed coordinate system.

Introducing the notation

$$
\frac{d^{*}}{d t}=\frac{\partial}{\partial t}+\tau^{\alpha} \frac{\partial}{\partial x^{\alpha}}, \quad \omega_{\cdot j}^{i_{j}}=\omega_{\cdot j}^{i \cdot}+v^{\alpha} \Gamma_{\alpha j}^{i}
$$

where $\Gamma_{a j} j^{i}$ is the Christoffel symbol, and the extensive $\omega^{*}=\left\|\omega_{i j}^{*}\right\|^{*} \|$ coincides with ω only in a Cartesian coordinate system (evidently, $d^{*} / d t$ is the nontensor time derivative), we write (5.1) in the matrix form

$$
\begin{equation*}
\frac{\Delta \mathbf{A}}{\Delta t \mid}=\frac{d^{*} \mathbf{A}}{d t}+\omega^{*} \mathbf{A}-\mathbf{A} \omega^{*}=\mathbf{B} \tag{5.2}
\end{equation*}
$$

Let us examine the solution of the auxiliary matrix equation
$u^{*} / d t \varphi\left(t, t_{0} ; x^{k}\right)=-\omega^{*}\left(t, x^{h}\right) \varphi\left(t, t_{0} ; x^{k}\right), \Psi\left(t_{0}, t_{0} ; x^{k}\right)=\left\|\varphi_{i \cdot}^{j}\left(t_{0}, t_{0} ; x^{k}\right)\right\|=\mathbf{I}=\left\|\delta_{i .}^{j}\right\|$
Following[10], let us introduce the "displacement function" $x^{\prime k}\left(x^{t}, t, t\right.$) which describes the position of a continuum point with the fixed Lagrangean coordinate ξ^{k} at the time t^{\prime} under the condition that the point occupied the position x^{k} at time t. Evidently the displacement functions are solutions of the Cauchy problem [10]

$$
\begin{equation*}
\frac{\partial x^{\prime k}}{\partial t}+v^{\alpha} \frac{\partial x^{\prime k}}{\partial x^{\alpha}}=0,\left.\quad x^{* k}\left(x^{i}, t, t^{\prime}\right)\right|_{t=1}=x^{k} \tag{5.4}
\end{equation*}
$$

From (5.4) it is easy to note that

$$
x^{\prime \prime k}\left(x^{\prime i}, t^{\prime}, t^{\prime \prime}\right)=x^{\prime \prime k}\left(x^{i}, t, t^{\prime \prime}\right)
$$

An iterative solution of (5.3) is

$$
\begin{equation*}
\varphi\left(t, t_{0} ; x^{k}\right)=I-\int_{i_{0}}^{t} \omega^{*}\left(t^{\prime}, x^{*}\right) d t^{\prime}+\int_{t_{0}}^{t} \int_{t_{0}}^{t} \omega^{*}\left(t^{\prime}, x^{, k}\right) \omega^{*}\left(t^{\prime \prime}, x^{\prime \prime}\right) d t^{\prime} d t^{\prime \prime}+\ldots \tag{5.5}
\end{equation*}
$$

The quantity ϕ is customarily called the matrizant of the matrix differential equation. Let us note that according to (5.5), ϕ depends on x^{k} only in terms of ω^{*}, where ϕ is generally a nonsymmetric functional of ω^{*}. We shall henceforth omit the argument \boldsymbol{x}^{k} or the func* tional argument ω^{*} in the notation for ϕ.

The order of the variableas, t_{0} in the notation of the matrizant ϕ is quite essential since * denotes current time, and t_{0} is the lower limit of the integration in (5.5), corresponding to some reference point. The properties of the matrizant

$$
\begin{equation*}
\varphi\left(t, t_{0}\right) \varphi\left(t_{0}, t_{2}\right)=\varphi\left(t, t_{1}\right), \quad \varphi\left(t, t_{0}\right) \varphi\left(t_{0}, t\right)=\mathbf{I} \tag{5.6}
\end{equation*}
$$

are easily proved by using (5.5).
From (5.3) and the second property of (5.6) we easily deduce

$$
\begin{equation*}
d^{*} / d t \varphi\left(t_{0}, t\right)=\varphi\left(t_{0}, t\right) \omega^{*}, \quad \varphi\left(t_{0}, t_{0}\right)=\mathrm{I} \tag{5.7}
\end{equation*}
$$

The solution of (5.2) with the aid of ϕ may be written as [22]

$$
\begin{equation*}
\mathbf{A}=\mathbf{C}+\int_{t_{0}}^{t} \varphi\left(t, t^{\prime} ; \omega^{*}\right) \mathbf{B}\left(t^{\prime}, x^{\prime}\right) \varphi\left(t^{\prime}, t ; \omega^{*}\right) d t^{\prime} \equiv \mathbf{C}+\int_{t_{0}}^{t}\left[\mathbf{B}\left(t^{\prime}\right) ; \omega^{*}\right] \tag{5.8}
\end{equation*}
$$

In particalar

$$
\operatorname{Sp} \mathbf{A}=\mathrm{Sp} C+\int_{t_{0}}^{1} \operatorname{Sp} \mathbf{B}\left(t^{\prime}, x^{\prime}\right) d t^{\prime}, \quad \mathrm{Sp} A \equiv A_{k}^{k}
$$

It is interesting to note that despite the nontensor nature of the matrizant ϕ the desired quantity A in (5.8) is of tensor natare because of the tensor nature of the Jaumann derivative and of the right side \mathbf{B} in (5.2).

It is not difficult to show that the customary integration by parts formule with the scalar function $f(t)$ holds for the integral in (5.8):

$$
\begin{equation*}
\int_{i_{0}}^{t}\left[\frac{\Delta \mathbf{A}}{\Delta t} f\right]=\left.f \oplus \frac{\Delta \mathbf{A}}{\Delta t} \Phi^{-1}\right|_{t_{0}} ^{t}-\int_{t_{0}}^{t}\left[\mathbf{A} \frac{d \dot{f}}{d t}\right] \tag{5.9}
\end{equation*}
$$

Let us consider an example. Let it be required to find the tensor $\sigma\left(x^{k}, t\right)$ by means of the known tensore from Eq.

$$
\begin{equation*}
\theta_{1} \frac{\Delta \sigma}{\Delta t}+\sigma=2 \eta\left(\theta_{2} \frac{\Delta e}{\Delta t}+\mathbf{e}\right) \equiv \mathbf{B}, \sigma \quad\left(x^{k}, t\right) t \rightarrow 0 \tag{5.10}
\end{equation*}
$$

From (5.10) we have

$$
\sigma=\frac{1}{\theta_{1}} \int_{-\infty}^{t} \exp \left(-\frac{t-t^{\prime}}{\theta_{1}}\right)\left[B\left(t^{\prime}\right)\right]
$$

Substituting its value from (5.10) for the tensor \mathbf{B} in this expression, and integrating while taking account of all the tensors vanishing as $t \rightarrow-\infty$, we obtain

$$
\sigma=2 \eta \frac{\theta_{2}}{\theta_{1}} \operatorname{e}+2 \eta \frac{\theta_{1}-\theta_{2}}{\theta_{1}^{2}} \int_{-\infty}^{t} \exp \left(-\frac{t-t^{\prime}}{\theta_{1}}\right)\left[e\left(t^{\prime}\right) ; \omega^{*}\right]
$$

Now, let us consider the determination of the Jaumann derivative and the Jaumann integral in a convective frozen coordinate system ξ^{k}. Let $a_{i j}\left(\xi^{k}, t\right)$ and $a^{i j}\left(\xi^{k}, t\right)$ be components of the symmetric tensor \mathbf{A} in the system $\boldsymbol{\xi}^{k}$. Let us introduce the three convective derivatives

$$
b_{i j}^{(1)}=\frac{D a_{i j}}{D t}, \quad b^{(2) i j}=\frac{D a^{i i}}{D t}, \quad b^{(3) i} \cdot \dot{\cdot}=\frac{D a_{\cdot j}^{i \cdot}}{D t},\left.\quad \frac{D}{D t} \equiv \frac{\partial}{\partial t}\right|_{\varepsilon^{k}}, \quad \mathbf{B}^{(k)}:=b_{i j}^{(k)} \exists_{1}^{i} Э_{1}^{j}
$$

Here $Э_{1 i}$ is the moving Lagrange basis in the deformed space (Section 1). In general tensors $\mathbf{B}^{(k)}$ are all distinct, which is associated with the fact that generally

$$
\begin{equation*}
\frac{D}{D t} g_{i k}^{(1)}=2 e_{i k}, \quad \frac{D}{D t} g^{(1) i k}=-2 e^{i k} \tag{5.11}
\end{equation*}
$$

are nonzero.
Here $\mathbf{e}_{i k}$ are the components of the strain rate tensor with respect to the basis $\boldsymbol{\xi}_{\mathbf{1}}{ }^{\mathbf{i}}$ with the fundamental tensor $g_{i k}{ }^{(1)}$. Let as note that the tensors $\mathbf{B}(1)$ and $B(2)$ are symmetric, while the tensor $B(3)$ is asymmetric.

Now let us consider the symmetric tensor with mixed components

$$
\begin{equation*}
b_{k}^{i}=\frac{1}{2}\left(b_{k}^{(1) i}+b_{k}^{(2) i}\right)=\frac{1}{2}\left(g^{(1) i \alpha} \frac{D a_{\alpha k}}{D t}+g_{k \alpha}^{(1)} \frac{D a^{\alpha i}}{D t}\right) \tag{5.12}
\end{equation*}
$$

By virtue of (5.11) we may represent (5.12) in terms of components of the tensor \mathbf{A} with a different arrangement of the indices

$$
\begin{gather*}
b_{k}^{i}=\frac{D a_{k}^{i}}{D t}+a_{k}^{\alpha} e_{\alpha}^{i}-e_{k}^{\alpha} a_{\alpha}^{i} \equiv \frac{D^{\prime} a_{k}^{i}}{D t} \tag{5.13}\\
b^{i k}=\frac{D a^{i k}}{D t}+a^{i \alpha} e_{\alpha}^{k}+e_{\beta}^{i} a^{\beta k} \equiv \frac{D^{\prime} a^{i k}}{D t}, \quad b_{i k}=\frac{D a_{i k}}{D t}-e_{i}^{\alpha} a_{\alpha k}-a_{i \alpha} e_{k}^{\alpha} \equiv \frac{D^{\prime} a_{i k}}{D t}
\end{gather*}
$$

Formulas (5.12) and (5.13) define the Jaumann derivative $D^{\prime} / D t$ of the symmetric tensor A with respect to the convective basis $\ni_{1}{ }^{i}$. Completely analogously, the Jaumann derivative of the nonsymmetric tencor could be defined with reapect to the basis \exists_{1}^{i}. The fundamental properties of the Jaumann derivative

$$
\frac{D^{\prime} g_{i k}^{(1)}}{D t}=0, \quad g^{(1) i \alpha} \frac{D^{\prime} a_{a k}}{D t}=\frac{D^{\prime} a_{\cdot k}^{i \cdot}}{D t}
$$

are easily proved.
Let us consider the question of inverting the operation of Jaumann differentiation in the convective coordinate system with basis $\exists_{1}{ }^{i}$. Let $u s$ write the first equality in (5.13) in matrix (tensor) notation

$$
\begin{equation*}
\frac{D^{\prime} \mathrm{a}}{D t} \equiv \frac{D \mathrm{a}}{D t}+\mathrm{ea}-\mathrm{ae}=\mathrm{b} \tag{5.14}
\end{equation*}
$$

Let us find the solution of (5.14), the tensor a, which vanishes at time t_{0} by assuming the tensors b and e known.

Let us introduce the matrizant $\psi\left(t_{s} t_{0} ; \xi^{k}\right)=\left\|\psi^{i} ;\left(t, t_{0} ; \xi^{k}\right)\right\|$ as the solution of a problem with the initial data

$$
\begin{equation*}
\left.D \varphi / D t=-\mathrm{eq}, \quad \boldsymbol{L}, \quad t_{0}, t_{0} ; \xi^{k}\right)=\mathbf{I}=\left\|\delta_{\cdot j}^{i}\right\| \tag{5.15}
\end{equation*}
$$

From (5.15) it is easy to see that ψ is generally a nonsymmetric tensor. The iteration solution for ψ is

$$
\begin{equation*}
\boldsymbol{\Psi}\left(t, t_{0} ; \xi^{k}\right)=\mathbf{I}-\int_{i_{0}}^{t} \mathbf{e}\left(t^{\prime}, \xi^{k}\right) d t^{\prime}+\int_{t_{0}}^{t} d t^{\prime} \int_{i_{0}}^{t^{\prime}} \mathbf{e}\left(t^{\prime}, \xi^{k}\right) \mathbf{e}\left(t^{\prime \prime}, \xi^{k}\right) d t^{\prime \prime}-\ldots \tag{5.16}
\end{equation*}
$$

Moreover, the tensor-matrizant ψ possesses all the properties of the ordinary matrizant since the matrix Eq, (5.15) is a system of ordinary differential equations. In particular, the properties (5.6) are satisfied for ψ, where the equation for $\psi\left(t_{0}, t ; \xi^{k}\right)$ is

$$
D / D t \Psi\left(t, t_{0} ; \xi^{k}\right)=\Psi\left(t_{0}, t ; \xi^{\kappa}\right) \mathrm{e}\left(t, \xi^{k}\right), \Psi_{(}\left(t_{0}, t_{0} ; \xi^{k}\right)=1
$$

It follows from (5.16) that ψ is a functional of e and depends on ξ^{k} only in terms of e; hence it is natural to write $\psi\left(t, t_{0} ; e\right)$. As above, it is easy to obtain the solution of (5.14) in the form

$$
\begin{equation*}
\mathbf{a}=\int_{t_{0}}^{t} \boldsymbol{\psi}\left(t, t^{\prime} ; \mathrm{e}\right) \mathbf{b}\left(\xi^{k}, t^{\prime}\right) \boldsymbol{\psi}\left(t^{\prime}, t ; \mathrm{e}\right) d t^{\prime} \equiv \int_{t_{0}}^{t}\left[\mathrm{~b}\left(t^{\prime}\right) ; \mathrm{e}\right] \tag{5.17}
\end{equation*}
$$

Another tensor $\psi^{\cdot} k_{k}^{\prime} \cdot\left(t, t_{0 ;}\right.$ e) could be introduced in place of the tensor $\psi^{i} \cdot{ }_{k}\left(t, t_{0} ; e\right)$ however it is easy to see that

$$
\psi_{k \cdot}^{\cdot i}=\left[\psi_{\cdot i}^{k \cdot}\right]^{T}
$$

The symbol T here denotes transposition.
Just as had been done above, it is easy to find the solution of the tensor equation

$$
D^{\prime} \mathbf{a} / D t+\lambda \mathbf{a}=\mathbf{b},\left.\mathbf{a}\right|_{t=t_{0}}=0
$$

(b is a given tensor, λ a scalar constant) in the frozen ξ^{k} coordinate system. The solution of this equation will be

$$
\mathrm{a}=\int_{t_{0}}^{t} \exp \left(-\lambda\left(t-t^{\prime}\right)\right)\left[\mathrm{b}\left(t^{\prime}\right) ; \mathrm{e}\right]
$$

Transforming in (5.17) from the ξ^{k} coordinate system to the fixed $\boldsymbol{x}^{\boldsymbol{k}}$ coordinate system, according to the rules set up in [10], we obtain

$$
\begin{equation*}
A_{k}^{i}=\int_{t_{0}}^{t} \frac{\partial x^{i}}{\partial x^{\prime m}} \Psi_{\cdot \alpha}^{m},\left(t, t^{\prime} ; \text { e }\right) B_{\beta}^{\alpha}\left(t^{\prime}, x^{\prime}\right) \Psi_{\cdot \gamma}^{\beta \cdot}\left(t^{\prime}, t, \text { e) } \frac{\partial x^{\prime \gamma}}{\partial x^{k}} d t^{\prime}\right. \tag{5.18}
\end{equation*}
$$

Here $A_{k}{ }^{1}, B_{k}{ }^{1}, \psi^{i} \cdot{ }_{k}, c_{k}{ }^{\prime}$ are tensor components in the fixed x^{k} coordinate system; the quantitiea $x^{\prime} k$ are diaplacement functions defined by the solution of the problem (5.4).

The tensormatrizent $\psi \beta_{a}^{\beta}\left(t, t_{0}\right.$, e) is defined by the expresaion

$$
\psi_{. j}^{i}=\delta_{j}^{i}-\int_{t_{0}}^{t} \frac{\partial x^{i}}{\partial x^{\prime \alpha}} e_{\beta}^{\alpha}\left(x^{\prime}, t^{\prime}\right) \frac{\partial x^{\prime \beta}}{\partial x^{j}} d t^{\prime}+\int_{t_{0}}^{t} d t^{\prime} \int_{t_{0}}^{t^{*}} \frac{\partial x^{i}}{\partial x^{\prime \alpha}} e_{\beta}^{\alpha}\left(x^{\prime}, t^{\prime}\right) \frac{\partial x^{\prime \beta}}{\partial x^{\prime \gamma}} e_{\psi}^{\gamma}\left(x^{\prime \prime}, t^{\prime \prime}\right) \frac{\partial x^{\prime \gamma}}{\partial x^{j}} d t^{\prime \prime}-\ldots
$$

In combination with (5.4), Formulas (5.18) and (5.19) completely determine the solution of the problem (5.1) for $\mathbf{C}=0$; however, they are considerably more complex than Formulas (5.5) and (5.8) which were constructed on the basis of the nontensor matrizant $\phi\left(t, t_{0}, \omega^{*}\right)$ Howe ver, it is more preferable to use the very simple Formulas (5.16), (5.17) in the frozen coordinate system. Some connection evidently exists between the matrizants $\psi . j^{1 \cdot}\left(t_{0}, t_{0} ;\right.$ e) and $\phi_{. j}{ }^{i \cdot}\left(t, t_{0} ; \omega^{*}\right)$, but it will remain unclarified here.

The authors are grateful to G.I. Barenblatt, V.M. Entov, R.L. Salganik and others for discussing the research.

BIBLIOGRAPHY

1. Rivlin, R.S., Viscoelastic fluids. Rev. frontier fluid dynamics. New York-LondonSydney, Interscience, 1965. pp. 144-170.
2. Sedov, L.I., Introduction to Continum Mechanics. Fizmatgiz, 1962.
3. Sedov, L.I., Mathematical methods of constructing new models of continua. Usp. Mat. Nauk, Vol. 20, No. 5, 1965.
4. Biot, M.A., Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomenáa. J. Appl. Phys. Vol. 25, No. 11, 1954.
5. Biot, M.A., Variational principles in irreversible thermodynamics with spplication to viscoelasticity. Phys. Rev., Vol. 97, No. 6, 1955.
6. Kluitenberg, G.A., Thermodynamical theory of elasticity. Physica, deel 28, No. 3, 1962.
7. Kluitenberg, G.A., A note of the thermodynamics of Maxwell bodies, Kelvin bodies (Voigt bodies) and fluids. Physica, deel 28, No. 6, 1962.
8. Kluitenberg, G.A., On rheology and thermodynamics of irreversible processes. Physica, deel 28, No. 11, 1962.
9. Kluitenberg, G.A., On the thermodynamics of viscosity and plasticity. Physica, deel 29, No. 6, 1963.
10. Oldroyd, J.G., On the formulation of theological equations of state. Proc. Roy, Soc. Ser. A, Vol. 200, No. 1063, 1950.
11. Ziegler, H., Extremal Principles of the Thermodynamics of Irreversible Processes and Continuum Mechanics. Moscow, 'Mir," 1966.
12. De Groot, S.R. and Mazur, P., Nonequilibrium Thermodyamics. Moscow, "Mir', 1964.
13. Khazanovich, T.N., Derivation of the equations of linear viscoelasticity, PMM Vol. 28, No. 6, 1964.
14. Pavlov, V.P. and Vinogradov, G.V., Thermal effects in a flow and stopping of anomalously viscous bodies. Dokl. Akad. Nauk SSSR Vol. 125, No. 5, 1959.
15. Kluitenberg, G.A., A unified thermodynamic theory for large deformations in elastic media and in Kelvin (Voigt) media, and for viscous fluid flow. Physica, deel 30, No. 10, 1964.
16. Oldroyd, J.G., Non-Newtonian Flows of Fluids and Solids. Rheology, (Russian translation) IIL, pp. 757-793, 1962.
17. Oldroyd, J.G., Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. Roy. Soc., Ser. A, Vol. 245, No. 1241, 1958.
18. Goddard, J.D. and Miller, Ch., Nonlinear effects in the rheology of dilute suspensions. J. Fluid Mech., Vol. 28, part 4, 1967.
19. Williams, M.C. and Bird, R.B., Three-constant Oldroyd model for viscoelastic fluids. Phys. Fluids, Vol. 5, No. 9, 1962.
20. Spriggs, T.W., A four-constant model for viscoelastic fluids. Chem. Eng. Sci., Vol. 20, No. 11, 1965.
21. Bland, D., Linear Viscoelasticity Theory. Moscow. "Mir'", 1965.
22. Goddard, J.D., and Miller, Ch., An inverse for the Jaumann derivative and some applicaticas to the meology of viscoelastic fluids. Rheol. Acta, Bild. 5, Heft 3, 1966.
23. Padden, F.J. and De Witt, T.W., Some rheological properties of concentrated polyisobatylene solations. J. Appl. Phys., Vol. 25, No. 9, 1954.
24. Colem m, B.D., Makrovitz, H., and Noll, W., Viscometric flows of non-Newtonian fluide. Theory and experiment. Springer. Berlin - Heidelberg - New York, 1966.
25. Leonov, A.I., Theory of thixotropy of viscoelastic media with continnons relaxationtime diatribation. PMTF, No. 4, 1964.
