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Within the scope of the customary thermodynamics of irreversible processes (TIP) (a linear
connection between themodynamic fluxes and forces, symmetry of the kinetic coefficients),
and utilizing the relationship derived herein between reversible, irreversible, and total
strain rates, a system of governing equations is constructed for the simplest viscoelastic
media in the presence of arbitrary finite reversible deformations.

These equations are investigated in the case of sufficiently small reversible deformations;
a ‘‘secondsorder’’ theory is constructed taking into account the physical as well as the geo-
metrical, nonlinearity in the system. It is hence taken into account that the kinetic coeffi-
cients will be tensor functions of the tensor of reversible deformations. This latter leads to
**deformation anisotropy’’ of the heat conduction and diffusion. Expressions are written down
for entropy production in the system for the simplest model media.

The *‘second-order’’ theory is extended to the case of isothermal deformation of visco-
elastic media with many relaxation times. The solution of a number of problems for the sim-
plest flows (simple shear, tension) of viscoelastic media showed a good enough qualitative
agreement between the constructed theory and experiment. Alsc questions about the inver-
sion of the Jaumann tensor derivative {(**Jaumann integration’’) are considered.

A large quantity of papers (see the survey [1]) is devoted to a theoretical description of
viscoelastic media. In the phenomenological construction of a theory of viscoelasticity, as
in the construction of continuum models generally [2 and 3], invariance considerations, the
geometry of finite deformations, and thermodynamics are utilized, while the thermodynamics
of irreversible processes (TIP) is used for dissipative media. Biot [4 and 5] made a suffi-
ciently complete investigation of linear viscoelasticity under conditions of small velocities
of this kind.

Let us refer to the work of Kluitenberg in which the thermodynamic derivation of govern-
ing equations for various media is expounded [6 to 9].

Among the earliest investigations on the nonlinear theory of viscoelasticity is the paper
[10]; however, the kinematics of viscoelastic phenomena remained unclarified in this work,
and there is a total absence of a thermodynamic analysis of the phenomena.

The development of a theory of nonlinear behavior of dissipative media is often connec-
ted with the extension of TIP?,II}. In opposition to such a viewpoint, an attempt is made
herein to utilize the customary version of TIP with linear phenomenological laws and Onsa-
ger reciprocity relationships, to derive the governing equations of a nonlinear viscoelastic
medium with physical and geometric nonlinearities.

We shall often rely on [2 and 12] without detailed referral in expounding the theory of de-
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formation of dissipative media and TIP.

It is known that assignment of a state function of internal«energy or entropy types (or of
other thermodynamic potentials), which depend on the temperature and external parameters,
is fundamental for the thermodynamical equilibrium processes. For small deviations from
equilibrium (*‘slightly dissipative’* media) it is possibie to assume conservation of such a
description with the aid of the state function.

First, it is generally necessary to increase the quantity of governing parameters (for ex-
ample, to include some internal parameters among the arguments of the state function); sec-
ondly, it is necessary to give, in addition, the dissipative function which describes entropy
production in a thermodynamic system.

The specific internal energy is selected as the state function; and it is sesumed that it
depends only on the specific entropy s and the reversible part of the deformation '¢,;® with-
out additional internal parameters, i.e., the dependence u(s,€) is similar to that which holds
in a nondissipative elastic medium. Only the lowest terms in the deviation from equilibrium
are kept in the expression for the dissipation,

Such a thermodynamic consideration of a viscoelastic medium has analogy with the stat-
istical approach to its hydrodynamics, when the description using a local equilibrium distri-
bution is selected as the original distribution, and relaxation processes are taken into ac-
count as small deviations from this equilibrium distribution [13]. Let us note that the assums
ptions made essentially differentiate the viscoelastic medium under consideration from a
medium with plastic deformations since the characteristic pecunliarity of this latter is the
dependence of the internal energy on at least the irreversible component of the deformation
as well [6 and 9].

1. Kinematics of finite deformations in a viscoelastic medium,
Following [ 2], let us determine the reversible deformation in a medium particle by using
some imagined, or actually producible process of unloading from stresses of a small particle.

Let us define the unloading process of the given particle of the medium as its being re-
leased instantaneocusly from stresses and waiting during an infinite time interval, If the to-
tal deformation in a particle is g, (¢,) at time ¢, then at ty + 0 it changes by an “instantan-
eous’’ elastic component, and furthermore, for ¢ > ¢ 4it will be released from “‘delayed’’ elas-
tic deformation, so that only one irreversible deformation component &P remains in the par-
ticle as ¢ » 0o, The difference £;;P-— g;; = g;;° defines the reversible component of the
deformation. The quantity &;,® is determined experimentally in precisely this fashion (with
the sole exception that the test lasts a finite time).

Let us introduce a Lagrangean *‘frozen’’ coordinate system &1, £2, £3 and let us con-
sider three positions of the continuum relative to a fixed x!, 22, x3 coordinate system with
the vector basis 3! and the fundamental form

ds® = g;,dx'dz’
o 1) The initial position at time ¢y <t with basis Jy!, fundamental form dgy? = g, (P d ¢!
dél;

2) The deformed state at time ¢ with basis 3,’, fundamental form ds;2 = g, (1) (£%, 1)
détdél;

3) The ‘‘unloading’’ state at time ¢ + eo with basis J,! and fundamental form ds ;2 =
= gu(z) (Ek, t+ o0} dffdg’.

According to the terms of the introduction 6f the Lagrange basis 3, we have ds2=ds,?2
by virtue of the continuum motion x! = x{ (&, t).

The reversible, irreversible and total components of the deformation are

e ="0EP—8®). ef="1EP—gP), ei="hEP—el) «(.1)

The space 2 is a space of final states for irreversible deformation, and a space of initial

states for reversible deformation; the apace 1 is a space of final states for reversible, as

well as for the total components of the deformation. Let us introduce the tensors of reversi-
ble g¢, irreversible &P, and total '€ deformation
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t= 85531‘315, gt = eﬁ’31"315, P = cﬁ”3,"3,5
for the various deformation components in the spaces of final states.

Here &, (E¥, 1), ef; (8%, t), eP. (&%, t) are defined by (1.1). On the basis of (1.1),
for the components of these tensors defined in different spaces we will have the component-
wise (matrix) equality

eﬁB + e‘up = 8”- (1.2)

Let us apply the operation of ‘‘convective differentiation’’ in the time D/Dt for the con-

stant Lagrange coordinates £*to (1.2)

De De, P De_.
1) i) i
Dt t-5i =TDr =ty (1.3)
Let us define the strain rate tensors in the final states
De* De, . i DeP De P . .
e = ei,31i31f, Dt = Dt 31 31’, Dt = ——1—):— 32135‘, (1 4)

Utilizing (1.4), we pass from the noninvariant (matrix) Eq. (1.3} to the tensor equation
[2]. To do this we introduce the local basis 9,} in the unloading space 2. then denoting the
somponents of the tensor D8P/Dt in the basis 3; by ;P we abtain

Dey?/Dt = C4x2C?;, C=C%3,"9: (1.5)

Here the tensor C with matrix [ C 3| defines the transformation from the covariant ba-
sis vector 321 to the vector basis J,a according to the law 3“ = Ca.;am . The space

1 differs from the space 2 by elastic deformations C and elastic rotations of each particle

of the medium, hence in the basis 3,' we have the following representation for the tensor

cl2:
C == eXp [k] Vg —_— 2!e, k = k”31i315, g = gi,(l)ali:f)l"" (1.6)

Here K is the antisymmetric tensor of elastic rotations; g is the fundamental metric ten-
sor. Substituting (1.6) into (1.3), we obtain the tensor equation (*)

De¢/Dt + (g — 2¢%):exp [— k] yPexp [k] (§ — 2e5):=e 1.7
Passing from the frozen ! to the fixed x* system, taking account of the transformations
for convective derivatives [2 and 10], we have (18)

det/dt + o8t — 2% - es® -+ e + (g — 2¢°)/rexp [—k] yPexp [k] (g — 2e¢)r=e
Here the tensors ¢°, e, g, Kk, yP, @ are defined in the zk system and have the covariant
components £,,°% ¢€;;, g, k”, Vi » @igs where

d 3 1 1
rTEer T + v*Ta, ey — —2—(Viv, -+ Vivy), Wy = 5 (V{U]— Vivy)

v%are velocity vector components, e;; strain rate tensor components, [ Wy | the matrix of
the vorticity tensor, Va the symbol of convariant differentiation.

The kinematic relationship (1.8) defines the desired connection between the elastic, ir-
reversible, and total tensor characteristics of the deformation. In contrast to the matrix re=-
lationship (1.3), the irreversible strain rate in the tensor relationship (1.7} is connected
nonlinearly (because of the reversible deformations, and elastic rotations of an element of
the medium) to the total strain rate and the rate of elastic strain.

Later we shall consider only such kinds of media whose macroscopic state is indepen-
dent of internal rotations, and therefore of the quantity k. As will be seen later, goveming
equations of such media, without the tensor Kk, may actually be obtained.

Let us introduce the new tensor

*) Iu.A. Buevich has obtained an analogous equation, where the kinematics of finite elas-
toplastic deformations is considered somewhat.differently for Maxwellian media.
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e? = exp [— k] 7P exp [k] = ;PO (1.9)

It follows from (1.9) and the symmetry of ¥P that @ is symmetric tensor; all three invar
iants of P coincide with the invariants of P, however the principal directions differ by the
magnitude of the elastic rotations.

It is convenient to take the Hencky tensor h, which is an isotropic function of the tensor
¢?, as a measure of the reversible deformation:

h = —1/,In (g — 2¢°) (1.10)

The principal axes of the tensors h and #° coincide.

Inserting the quantity eP according to (1.9) into the fundamental kinematic relation (1.8),
replacing ¢¢.by h according to (1.10), and multiplying on the left and on the right in this
equation by the nondegenerate matrix exp(h], we obtain

Ah

Ah dh) (1.11)

+ep___e= f(h, 0, e, dat

dh
2f = exp [h] %(exp [—2h])exp[h] +2 =+ 20h —
— 2he + exp [h] ® exp [— h] —exp [— h] @ exp [h] 4
+ exp [h] eexp [—h] -+ exp [— h]eexp [h] —2e
Here and henceforth, tensor {matrix) products are introduced. The Jaumann derivative
h Fhy; . .
(%t_)i, = fd_tf + VOV gy + 01— Ria® (1.12)
is denoted by the symbol A/A¢.
The distinguishing property of the Jaumann derivative is
(Ag/At)yy=0 (1.13)
The tensor f from (1.11) possesses the following properties: f is a symmetric tensor,
i-.e., f;, = f’,a
The scalar product of the tensor f by an arbitrary function ¢ () is zero, i.e.,

QY (hyg) f;=0, g9f;;=Spt=10 (1.14)
For sufficiently small elastic strains (h=aH, a K 1)
2f = h’e — 2heh + eh? + O (h% - . . .) +

+ hoh?— h’eh + s h'e — s eh® + O (h'e - .. .) +

2h dh h? dh dh h? dh
+ g gh—g - ro(e g +) (1.15)

Taking account of (1.11) and (1.12), Formula (1.15) shows that for sufficiently small re-
versible deformations the right side of the kinematic relation (1.11) contains terms two or-
ders higher than the terms of the left side.

When the kinematic tensors &, € and dh/dt commute with the tensorh, f= 0 holds. Such
a case is realized, say, in affine deformations of the medium, when the directions of the
principal axes of the tensors @, h and dh/dt coincide or are fixed in space, and @ = 0.

Contracting the kinematic relation (1.11) according to subscripts, we obtain

dhao [dt -+ Yak = €ea (1.18)
Introducing the notation py, P 4 P25 8o+ &3, 82 for the densities and determinants of the

metric tensors in the initial, deformed and “‘unloading’ states, respectively, we will have

1 1 d
oy = —InEL — In £~ P o=t inft = % nlo
e = 5 In o In ot V=7 In o = & lnp’
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1 d. & _ d Po

Subsntuung these expressions into (1,16), we obtain an 1denmy of obvious physical
meaning: the sum of the reversible and irreversible volume strain rates equals the total vol-

ume strain rate of the medium.
As will be shown below, the introduced tensor e,,P is defined uniquely in terms of the

observed kinematic (strain rate tensor ¢,) and dynamic (stress tensor 0,;) quantities.

Hence, despite the fact that the tensor of elastic rotations k,; remains undefined in
terms of these quantities, components of the irreversible strain rate tensor in the unloading
space

DeP/Dt = oxp [—h] eP exp [—h]

can easily be determined by means of the transformation formulas (1.5), (1.6), taking acc-
ount of the definition of e;;P.

Let us note that the kinematic relations (1.8) and (1.11) in the two limit cases ¢ + 0
(k » 0) or yP » 0 go over into the kinematic relations for a viscous fluid and a medium with
reversible elastic strains, respectively.

2. Expression for entropy production in a system. Simplest vis-

coelastic models. Common to any type of continuum are the equations of conservation
of mass, momentum and total energy

dp ava dvi 8515 dw 0
T= e Pm T wmr Par =, POe—a)  (@21)

Here p is the density of the medium, v, the velocity vector components, 0;; the stress
tensor components, w the total energy of unit mass, 98 the heat flux vector components. For
simplicity the equations are written in a Cartesian rectangular coordinate system.

The stress tensor in a medium without internal moments is symmetric ¢, = 0;,, and the
totzal energy consists of the kinetic energy and the internal energy of the medium pw = %p
vy +pu.

aThepprincipal difference in the various model media is in the specific intemal energy u.
As has already been said, we shall consider that medium in which the specific internal en-
ergy depends on the specific entropy s and the Hencky tensor A of the reversible deforma-
tion u = u (s, Ay;) (here the choice of A, instead of ey;° is made from considerations of
convenience). The Gibbs relation may be written as

du "ds du
'ET_TW—i_F_, 2.2)

Utilizing the equations of this Section it is easy to obtain an equation for the specific

entropy 2.3)
p—'—'_—a"q"s—"'Pu P>O TP'——'%wB—L""GaBeaB P%‘
9zp s

Here eaﬂ‘is the strain rate, P, the entropy production, which according to the second
law of thermodynamics is positive for nonequilibrium processes and vanishes at equilibrium.
The uniqueness of the isolation of the expression P, as the entropy production in (2.3) is
based on the invariance of this expression relative to the Galileo transformation, and on P,
vanishing for thermodynamic equilibeium [12). In the case of an isotropic medium, the sca-
lar fanction of the internal energy may depend only on invariants of the strain tensor

Ii=heay Iy=heshpa, Is= hephpritra

Then du/dtl. can be written as

d A Sy’
e o] =k (B)er L= dut 5 2k + 5 ke (2.4)
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Here the 0,;°® are components of the “‘elastic stress’’ tensor.

In order to extract the independent thermodynamic forces and thermodynamic fluxes cor-
rectly in the expression for the entropy production let us utilize the fundamental kinematic
relationship (1.11), and let us divide the tensor quantities into global and deviatoric parts.
For example

Oy = cij’ -+ llscaablh Caa = 0

Then the expression for the entropy production is rewritten as

’ ’ ’ , , q, aT
TP, = (Gap — Oup) €ap + Gapap — —T£ o, T 1/3 (Gaa — Oaz) €ss + */s0xatst (2.5)

It is now possible to proceed to obtaining the goveming equanons of the medium. For
a thermodynamic approach to describing it, the quantities 0,3, 0,4° and c?T/azIB in (2,5)
for the entropy production play the part of thermodynamic forces, ¢ gip and 94 of
thermodynamic fluxes. According to the customary linear theory of TIP they are connected
by linear phenomenological relationships [12], which, in particular, yield the goveming eq-
nations of the medium.

By virtue of the Curie principle, the phenomenological relationships for scalar, vector,
and tensor phenomena separate in an isotropic medium. Taking account of the Onsager re-
ciprocity relation [12], we obtain for the scalar phenomena

e P e
Gaa — Oga = @1€qa + G2€aa, Oax = @2€aa + A3€ak (2.6)
for the vector phenomena

q; = — % (0T [ dxy) (2.7

for the tensor phenomena

S; " —_— G?j = bleu' + bgef’, , 5”’ = bgeu' + bse?j (28)

The kinetic coefficients %, a,, b, are generally functions of T and I, (h")
Entropy production becomes a nonnegative-definite quadratic form (a,, B, are easily
expressed in terms of a , b, ) (2_9)

TP, = oheaz + 205€2a0pp + %a0a8 + B1eas + 2Bo€agSus + Bsoeh + xT ™ (3T /92

Conditions for positive-definiteness of the quadratic form are

x >0, a; >0, b, >0, a,a; > a2, bjby >b% o >0,p, >0

a,05 > a?, Bify >B.° (2:10)

The inequalities (2.10) (part of which may be weakened in various particular cases) are
sufficient also for a unique definition of the flows in terms of the thermodynamic forces.

Taking account of the inequalities (2.10), the kinematic relationship (1.11), and the ex-
pressions (2.4) for 0,,®, Eqs. (2.6) and (2.8) are a closed nonlinear system of rheological
equations of some isothermal model of a compressible viscoelastic fluid, which is as shown
below, describes retardation and relaxation.

Let us consider the equation for the medium temperature.

Let us determine the specific heat for a constant reversible deformation

o= (57),= T (37), (2.11)

Transforming it by utilizing (2.3), we obtain
[ah a6
pen 2L 4 pT ( )
dt Ohyg | .

TP =TP,—x%(veT)

= Va(xvVal) + TP, (2.12)
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From the condition of integrability of the specific free energy u ~ T's we have

Bs\ 335 /p
(a"‘ﬁ )T '—{( oT )h
Then (2.12) may be transformed into

80,5 /p ) dhyg (2.43)

daT + —m—
Pen gz = Va (¥Val) + TP, +PT( oT ), dt

Formula (2.13) shows that the thermal effect in the deformation of the viscoelastic me-
dium considered is due to the dissipative temn, as well as an additional term, which appear
particularly sharply in rapid changes of the mode of medium deformation. Great heating has
actually been observed [14] in rotational viscosimeters during a sudden stop in the flow of
viscoelastic fluids of varions kinds.

We can introduce the specific heat for a constant tensor 7 = ¢ ¢/p (which corresponds to
constant stress in Maxwellian or elastic media), which is connected with ¢;, by means of
the relationship

0%qp d%,g
c.=¢,~T\ 57 . dr
The heat conduction Eq. (2.13) becomes
dT Bhyg) dreg
pe} 77 = Ve (¥V,T) + TP,* +.pT (73%-)1 - (2.14)

When the elasticity in the medium is of entropic nature, as may be in the flow of polymer
solutions and melts, for isothermal deformation

__ [ Ou __{du as duy 97y .
0= (gi5)e = (3 ) o )e + (35), =— T (57), + o
From this results 7;, = 'Tu°T/To (the superscript © shows that the tensor 7,,° is refer-
red to some *‘initial"’ temperature 7). In combination with the above-mentioned rheological
Eqgs. (2.13) or (2.14) describe nonisothermal behavicr of the considered viscoelastic medium.
The system of Egs. (1.11), (2.4}, (2.6) and (2.8) describes the nonlinear behavior of a
medium possessing stress relaxation and afteretfect. Let us show that in particular cases
the nonlinear Maxwell model with relaxation time, and the Kelvin-Voigt model with retarda-
tion time can be obtained from these equations.
1 Nonlinesr Maxwell Model. Letus set
8 = @y = b, = b, =0, ay > 0, by >0
in (2.6) and (2.8).
Then using the notation by = 27, 65 = 3{ (, { shear and volume viscosity coefficients),
we obtain

P du du du
8y;=21¢,,P + (L — /s 1) aadyy, = cue=p3!—!- 6,; + 2pa—l-; hy;+ 3p 5T highy; (2.15)

The system (2.15) shows that the streas tensor in a Maxwell fluid is connected with the
elastic strain tensor just as in the equilibrium case of a purely elastic medium, and the
tensor e,,P characterizing the irreversible strain rate is also connected with the stresses
by Newton’s law, as in the case of a viscous medium.

The expression for the diasipation tekes the simple form

TP, — %I (VT =0t + 2ned = 0,3/ (90) + (0q0)*/ (2) (2.16)

As follows from Section 1, tf;' = 7{? holds, i.e., the elastic rotations of elements of
the medium do not affect the value of the dissipation. If @7, h are expressed in terms of o
according to {2.15) and subatituted into the kinematic relationship (1.11), we then obtain
the rheological equation of s Maxwell fluid, which connects the streas tensor with the total
strain rate tensor.
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2°, Nonlinear Kelvin-Voigt Model (see also[15]). This model can be
obtained by the following formal means. Let us set €P = 0 (yP= 0) in (2.5) and the kinema-
tic relationship (1.11). Then we have 0,4 = G4 S + 6¢44 in place of (2.6). Analogously,
ou'= 9y ‘ot be,, ’. Furthermore, let us use the notation a = 3£, b= 27. ForyP = 0 there
holds € = g and the kinematic relationship (1.11) becomes (see also (1.8))
di
T +we—co et e =le 2.17)
This is the expression for the customary connection between the finite strain tensor and
the strain rate. The corresponding rheological equation will be

6 =0°(h) +2ne+ (L— *sn) (Spe)g (2.18)
In combination with the heat conduction equation, the system of Eqs. (2.17) and (2.18)

is a closed system of thermorheological equations for a compressible viscoelastic isotropic
medium with aftereffect. The expression for the entropy production is

TP, == uT™1 (V, TP + Le 2 + 2ne,} (2.19)

A relationship of the type (2.18) has been obtained in [15] for the case of large elastic
deformations.

In concluding this Section let us make two remarks.

1. Phenomenological connections between the stresses, total strains and their total time
derivatives, obtained on the basis of an expression of type (2.4) for the entropy production
without the kinematic relationship (1.11), become very ambiguous. This latter follows, say,
from the fact that

) ’ Ae ’ de,i
Dy; () (%)” = @4 (&) ¥y (e) (—A_t)ki = Py () ¥y () d_]t

while

Av(®) . ( de )
( At >i5 * ¥u O\ ),

The arbitrariness in selecting the thermodynamic forces which appears in the absence of
the kinematic relationship leads to great arbitrariness in the rheological relations obtained.
In the presence of the kinematic relationships (1.11), independently of the selection of
the measure of reversible strain, the final rheological equations are obtained completely

uniquely as a result of the above-mentioned procedure.

2. In general, the results of this Section refer to the case of weak nonequilibrium; it can
only be hoped (as the examples presented below indicate) that they have a sufficiently
broad domain of applicability for viscoelastic media. In the more general case it is apparent-
ly expedient to use the methods elucidated in [11].

3. Governing equations for simple viscoelastic fluids in the pre-
sence of sufficiently small reversible strains. Let the reversible strains
in a viscoelastic medium be sufficiently small as compared with the total strains. Such a
case is realized in weakly elastic fluids as well as for sufficiently slow motions. Formally
expanding the kinematic relationship (1.11) for sufficiently small h and discarding terms
whose order is h2 greater than the rest, we will have the ‘““linearized’’ kinematic relation-
ship

AhJAt fer=e (3.1)

For sufficiently small h the function u (s, h) can be represented with cubic accuracy as

Polt = Poltg () + pdy + sholy? + Yy Mg + AgI Iy + Yahyl® (3.2

Here p, is the value of the medium density in the undeformed state at the temperature T, ;
p is the shear modulus; K = A ) + 2/3u the modulus of multilateral compression; A ,, A,, A,
the characteristica of the ‘‘anhamonic part’’ of the internal energy.

According to the requirement for thermodynamic stability of the system, the expansion of
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u in terms of h starts with quadratic terms in which g and K are positive, but the signs of
the A, are not definite.
Now evaluating ¢, on the basis of {2.4) and utilizing (3.2}, we have

Po/ Poijf = (Moly + Maly -+ Asls®) &5 4 2 (1 -+ Aoly) gy + Mihiahaj (3.3)

It is seen from this expression that keeping just third order anharmonic terms in the ex-
pansion of the internal energy in terms of the strain h corresponds to the accuracy of the
‘“‘linearized’* kinematic relationship (3.1), As in (3.1), there are lower order terms in bt in
{3.3) and terms whose order is h2 greater than the rest are not taken into account (*)

It is easy to separate ¢® into spherical and deviatoric parts

Po/ P3aa = (Bho + 2p) Iy + (g 4 A1) Ig + (2hg + 3hg) [
o/ 034t = 2 (1 + Aely) by’ + M1 (hiaka; — /al20i5) (3.4)

Relative to the spherical part it is reasonable to expect that at low pressures the irre-
versible volume changes are insignificant, ise., € 5,P= 0. Then according to {1.16) and

(2.6}
Saq — Oqs == A€za = Ahyy [dt
Utilizing (3.4), 04,° can hence be eliminated, and an equation relating 04, and /| = hgy
can be obtained: (3.5)

Saa = @ (dly }dt) + L [(Bho + 28) Iy + B(ha -+ M) To + (2ha + 3h) 1]

This equation describes the volume aftereffect in the medium. Since e, f = 0 we have
I, =hgy = 1n(py/p), then for small deformations (3.5) passes into the nonlinear Kelvin-Voigt
equation relating the volume strain to the isotropic pressure. In the more general case, when
it is impossible to neglect irreversible volume changes (g7 # 0), it is necessary to use
the system of Egs. (1.16), (2.1}, {2.6) and (3.4), which describes relaxation of the pressure
and strain rate, in order to describe volume effects.

Let us here consider the simplest case also for the deviatoric stresses. Let us assume
that in the expression for internal energy the anharmonic terms may generally be neglected
(**). Then Hooke’s law 0;; ®”= 2k, “holds for the *‘elastic’ stresses, and it is easy to
eliminate @ and h from the system of Eqs. (2.8). We hence obtain the rheological Eq.

doy . desf .
6; (-ff' —— Giqldq; 4 mia%;‘) + oy =27 [93 ('3% + ©Oyaj— e{a@a;‘) -+ 3:;'} (3.6)
In deriving (3.6) the case of an incompressible medium (p = py) was considered and the

coefficients in relationships (2.8) were assumed constant. The coefficients §,, #, and 7in
(3.6) are connected with the coefficients of (2.8) as follows:

0, = by / (2u). By = (bibs — b)) / (4um), 2n = by + 2b; + by 3.7
It follows from the inequalities (2,10} and from > 0 that
1>0, 8, >8;, >0 (3.8)
i.e., the positiveness of the viscosity coefficient and the relaxation time, and the fact that
the stress relaxation time is always greater than the time of the after-effect of the strain

rate.
An illustrative model of one elastic spring and two viscous elements in two equivalent

*} It is understood that only terms which do not raise the order of (3.3) as a whole are
kept in the expansion of p in terms of h.

**) Within the scope of the expounded phenomenological theory, the satisfactoriness of
such an approximation was not clear before; comparison of the consequences of the
model equations with experimental results will be elucidated below.
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versions corresponds to the linearized Eq. (3.6) at low flow rates: in one version the Max-
well element connected in parallel with one of the viscous elements, can be isolated, and
in the other the Kelvin-Voigt element, connected in series with a viscous element.

Model equations similar to (3.6) have been repestedly relied upon, and not without suce
cess, for'the description of viscoelastic fluids {16]. However, as will be shown below, these
equations do not describe correctly enough such an important property of viscoelastic
fluids as the normal stresses. In those cases when the effect of the nomal stresses plays
a large part, refined equations are necessary.

There are several formal possibilities for refining the equations by remaining within the
scope of the kinematic relationship (3.1) linear in h. Two of them concem refinement of the
phenomenclogical relationships between thermodynamic fluxes. One is to keep quadratic
terms in the thermodynamic forces (or fluxes) in relations of the type (2.6) to (2.8); such
a method extends beyond the scope of customary TIP theory.

The other method within the limits of this theory is to take account of the dependence of
the kinetic coefficients on the elastic strains h. Elastic strains result in a deformational
anisotropy of an initially isotropic medium so that it is necessary to generalize the relation-
ships (2.6) to (2.8). In the incompressible case {ayq = 0, A, = 0), the relationships for the
stresses become, with linear accuracy in the strain h,

Gi; — Gi5° = biey; + b1y (Rialaj =+ Bjalai) 1+ brohapea:di; +
+ baey? + by (Riat; + €i3haj) + Pashage 50y, (3.9)

6;° == baey; + bay (Rialaj + €iakas) 4 baghazeasdyy -+
+ b3€£ + b31 (hiaeax; + eighaj) + bssha,%eagai J

Still another possibility is to take account of the anharmonic members in the expression
for the internal energy. As an illustration, let us write down the equation for an incompres-
sible medium by utilizing the relationship (2.8) with constant kinetic coefficients and elas-
tic stresses (3.3)

(82, i 1) = (1

an e
At Jij ) 1

(3.10)
b A b
6y = (bi— ba?/ bs) ey + —— g; il hys -+ —b% [(bg + b3) higha; — T’ I ,63]

The relationships (3.1), (3.4) and (3.9) possess the same accuracy in h. Within the lim«
its of this same accuracy, they can be utilized to obtain an equation connecting h with the
strain rate @ for an incompressible mediom

Ah 2p Arbs — dpbg; bebg1 — baby, by + bs
(Kt_)ij + 'Tj;hij + BT {hh}; + — xR {he};; = — by i (3.11)

The abbreviation {Pq}ij = PiaGaj + JiaPaj — */3Papqapdis is used here. In deriving
(3.11) it turns out to be necessary to impose the following constraints on the coefficients
which originate from the condition of disappearance of the spherical parts in (3.11)

2byy + 3by, = %—:; b, 2bgy + 3bg, = -21-3« by (3.12)

Utilizing now (3.11) and (3.12) and the same relationships (3.11), (3.4) and (3.9), the
expression for the stress oy, {after subtracting the isotropic pressure) can be written as

O” = (bl —:L:) eu + Zy. (1 + %‘) h” + (3.13)
Aabs (b — 4t (Dobgy — ,
+ 158{ 2+b3) 2_bi:( 5681 babn) {hh}u +%(i + _g_}) kagblj +

2

3
+ (bu — an%’;‘ + bsy %;-) {he};; + (bn + -g— by — %’ﬁ- %—) hapeapbyy
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The obtained system of {3.11), (3.13) is the goveming equations of the medium which
connects ¢ and @ by means of the tensor parameter h. According to (2.5) the dissipation in
such a model, to the accuracy of terms of two orders in h, will become (isothermal case)

Ba 4u?
TP, = (by— = )eal + T hd+ (3.14)

hibs — 2ub, ba by?
-+ 4p ;-"_ba?l."ﬂ haghshya + 2 (bn — 2by Tt b3y b—s"—) hazepyya
Terms with coefficients by 4, by, b3g do not enter the expression for the dissipation
in the considered incompressible case.
To the same quadratic accuracy as before, the parameter h can be eliminated from (3.11)
and (3.13) and the equation connecting ¢ and € can be written explicitly

6, (‘%j—)ﬁ + sy -+ c1 {88}y + ca{se}y; -+ ¢354p20;; + 4820808y +
A N
+ cafeehy + cotas®dyy + o1 fs 5|+ euses (55) 0= 20 (1— ey (3.5)

8s
g5 = 6 — 21 o

The coefficients §; , A, 1, c; are expressed in tems of the nine initial coefficients

iy A v bl, by bs' by bxz' b“, b31. In the particular case when the coefficients of the

last two members in (3.13) vanish, then ¢, = ¢ = ¢, = ¢y = 0 and the seven coefficients in
(3.15) are expressed in terms of the seven original coefficients.

It is interesting to compare (3.15) with the equations of the Oldroyd eight-constant mod-
el [17]. Eqs. (3.15) possess a number of evident differences from the Eqgs. in [17], for exam~
ple, there are nonlinear terms in the stresses and terms with products of the stresses by the
acceleration in (3.15). Moreover, despite the high arbitrariness in selecting the constants,
{3.15) do not actually contain many particular cases admitted by the Oldroyd equations.
Thus, by virtue of the existing relations between the coefficients ¢} and by it is impossi-
ble to obtain the equations of the ‘‘covariant’ and ‘‘contravariant’ models introduced by
01&royd[10] from (3.15).

The exposition is here conducted under the assumption of isothermy. If there is a non-
uniform temperature distribution T in the medium, this then results in the occurrence of a
thermal flux ¢,

g = — (%0dix + %1htia) VaT (3.16)

The dependence of the heat conduction coefficient % on the reversible strain h is taken
into account in (3.16) in a linear approximation. The influence of the strain results in a de-
formational anisotropy of the hest conduction process even in a medium with isotropic struc-
ture. [t is interesting that such a situation should concern not only solids but also elastic
fluids. Analogously also for the diffusion process.

Let us now consider some particular cases admitted by the model Egs. (3.11) and (3.13).

In the case of a linear connection between the *‘elastic stresses’’ and the reversible
strains (A, = 0), and if in addition we set b,, =~ 3% b,,, equations of the same kind as
in [18] are obtained. According to [18], the flow of weakly concentrated suspensions of
slightly deformable elastic particles in a viscous fluid is described by such equations(*).

It is easy to obtain equations in the same form as in {18], directly from (3.1), (3.4) and (3.9)
Ah 2 IN b4+ &
(‘,_‘\’{)i ;T "7:‘“ hyj = (1 + 7;;) e + '—1%31 {he};; — ba {h -2—?—}“ (3.17)

3

*) Let us note that the specific numerical values for the coefficients in the equations from
[18] do not agree with the possible values of the coefficients in (3.17).
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| Ah
64 = (b1 -+ 2ba + bs) egj — (bs + bs) (—37){5 +
Ab
+ (bu + 2ba2 + byr) (el — (bar + bw) {"Tf} y

Since these equations have been obtained approximately both here and in [18], there is
ho special reason for keeping them in the form (3.17), and the first equation can be solved
approximately for Ah /A¢ and it is possible to go over to Egs. of the form (3.11) and (3.13).
In this case cy=c, = cz= ¢y = 0 in Egs. of the form (3.15).

Ifwe add b,y (b + by)=bgby, —byby,=(bgb —bybyy) by/by =21 % (1+ &) b,2
to the previous assumptions about the coefficients (A, = 0, b, = — 2/3 b,,), we thereby
arrive at the model equations discussed in detail by Bird et al. (for example, [19] and[20])

sg L] 0
0 (57),, F 0 (o) el + sy =20 (1— G- ) e, sy=cu—2ngrey (348

The peculiarity of this model is that the terms {se} vanish in the case of a Maxwell type
model (;; = 0,;°) while the formal equality f, = 0 does not affect these terms (for 6,=0,
Eq. (3.18) describes only stress relaxation, which is customarily associated with Maxwell
type models). The reason is that b,, # 0 for b, = by = 0 (#, = 0) by virtue of the constraints
imposed earlier on the coefficients, and therefore, o # a”‘ because of the nonlinear terms.
Another peculierity is that in such a model g,, = 0 in one-dimensional steady-state shear
flows. It is possible to branch off easily from this by considering b, , % — % b,,, ther
spherical terms of the form

€835, eaafaasii' Sqp (A€ /Al)gg 84;

will appear in the equations.
For the model with Eqs. (3.18) with T = const, the expression for entropy production to
the accuracy of terms of two orders is

0 01 2 (1+ep
TPy =20 €af + n (@ — 0 "ab T 7 (@1— By ‘s8%Br’ve 3.19)

Let us consider another kind of particular case when nonlinear members with {hh} and
{he} drop out of Eq. (3.11) for h, i.e., when by = bgd, / 4, by = bgh, / 4 (by virtue of
(3.12) this is equivalent to the requirement that by, = by; = 0). The equations of the mod-
el become

Oy = (bl_ %) e + 2phi + M (1 + —II::_) hiahaj +

Mbs2
+ (bu — m) (higa; + eighg;) + buhaaeaeau

In this case (T = const) the dissipation is

b’ 2 4"-’ 2 2[]-}:1 !A]bgz
TP,= (bl_ K) € T By s+ s hyghayPya + 2 (bu — m) hyses o (3.21)

For b, = 0, by; = Abs?/ (4 nub;) Egs. (3.20) reduce to equations for e end 8y =0y ~
—{by = by2/by) e,

o

As A bs \2
(1), — 2 (145 Gratas + eiasap + (3.22)
2}1 )u bg bg
ety gy (13 et = (11 30) o
Here the case b, = 0, s, = 0;;, corresponds to a model of Maxwell type (o), = o,° )y dees,
is described by equations of the same type.
Utilizing the concept of the Jaumann integral (see Section 5), we may pass from a differ
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ential to & fanctional description of the model equations.
Thus, Eqs. (3.20) are “solved’ as follows (for simplicity we set b,, = 0, b, = A, b2,/
(4#63)):
te
b’ ’
hgi (ty= (1 + "5;) S [e(t ))g"

—00

by? by ¢ .
550 =(0—o) ey + 2 (1 +5) § 1ot + (339

1
—0

"

+ 1 +—}:—)"§ [ @)lie § le @y
——C} ~—00

Here the notation

= t

: 2
§ oy = | Pia (. ¥) ey (€935 (F, oxp | — (e —0)
—00] -

lil:u been introduced for the Jaummnn integral, where ¢ is the matrizent, which satisfies
qe

dQy; (b, 0)/ At =0 (1) Bg; (6 ), @yt 1) =By
in the case of Cartesian coordinates.

The mode! equations in the form {3.23) are analogous to the expansions of hereditary
functionals in fanctional series utilized in the literature (see e.g.xfl]). In addition to (3.23)
it is not difficult to write an expression for the dissipative functional by using (3.21).

Up to now the exposition has relied on linear TIP relationships in the fluxes and forces.
However, it is easy to see that teking account of the next terms, quadratic in the forces
{fluxes), will not introduce additional difficalties but will just increase the arbitrariness of
the coefficients. The new feature of the equations will just be the fact that terms of the
{ee},, type will even occur in the equation for by (compare with (3.11)). On the other hand,
one *‘thermodynamic nonlinearity’’ in the linearized kinematic relationship of the quadratic
intemal energy and constant kinetic coefficients may result in a set of models with equations
analogous to (3.11) and (3.13).

As an illustration, let us consider the case when the whole nonlinearity is due to the
violation of the crossed symmetry between two phenomena (although the Onsager relation-
ahips are valid). Now, let (2.6) and (2.8) be replaced by (3.24)

cu “‘":5‘; = bl‘u + b!‘fj +dy {epep}i, + die’;zau ’ ci;_—" 2}“‘” == bien + ds {00)” + bﬂ%

For simplicity, let us set by = 0, in this case taking account of the nonlinear terms is
particularly necessary. Retaining only terms of two orders, by using e P=e¢ ~ Ah/As, Eq.
{3.24) is casily transformed into

Ah { dg
(Ti”)g T 5 M= &+ g feely;

o o d (3.25)

Sy =2, & + 2uhy;+ g3 (b}, + kel

where 8, —0,=0,2 /7 in this case.
With the same two order sccuracy, we have for the dissipation (T = const)

O 2p 2dy 2dy
TP, =275  eaf -+ 7 Pud + B3 Baplpr bva = G %apBrive

In concluding the Section, let us estimate the role of the nonlinsarity in the kinematic
relationship. When we may limit oneself to terms of three orders in the kinematic relation-
ship, while the rest of the relstionships are considered linear, the goveming equations will
become
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As 2u by — 2by
( At ),-5 by %t T T2p (B 1 b (ia®as % 20ia %ap % T
. by by?
+ em SaB ng):: (1 + E) eu, Sij= G‘J. o (b;— E) eu (326)

A comparison of predictions of a model with complete kinematic nonlinearity and a mod«
el with a “linearized’’ kinematic relationship will be made later in a simple shear flow exam-
ple. We consider the medium incompressible, and all the remaining relationships linear (for
example, 0,° = 2uh ”).

The problem of stationary shear flow with shear velocity y *hence reduces to the sole-
tion of the matrix Egs. (see {1.11))

—é%l—h——z —%—ezexp(——h) [e — @] exp (h) 4 exp (h) [e + @} exp (— h)

, (3.27)
o=27 —gf-e+2p(1 +—b§-)h
In the case under consideration the matrices €, @, h are
1 /0 1 1 /0 —1 By A
=327 (1 0)’ e=37 (1 0)’ h=(hm ‘-hu)
In order to solve the firgt matrix equation for the matrix h, let us perform a similarity
transformation such that the matrix h would reduce to the diagonal form

(s

In the considered case h,y = 0, hyg? = 2 (hu? + hu?) = 2a% hyghg, hyy = O, Intro-
ducing new unknowns a and ¢ in place of ,, h;, by setting by = a cos p A ,=a sin ¢,
it is easy to see that the matrix q is hence an orthogonal rotation matrix

. (COS a9 —sinlho
7= \sinysq cosljy ‘P)
and the matrix equation reduces to two transcendental Egs.

2.4 i 2a=T{ 4 k) sing
,(zY ; sh 2a = (ch 2a -+ k) cos ¢ (3.28)
| =0.5 Here I'= 0, y "and k = by/b; are nondimension~
5 ! al parameters. The parameter k is expressed in
1 i ,l'=£7.5’,/"" terms of the dimensional constants 1, 2, 31 N 92:
R ] s
Vs - (k= (1= )
10 s k= [ The components of the elastic deformation and
/,—”"" stress tensors may be expressed in terms of the
/,,/ =-129} parameter a as follows:
N T ash2a 2a?
Y St Y x h=GEm etk M=Tarm
a sh2a
Su=2u(1+k)m
. £ 16
000 7 ¥y T 9 S13 = S13— "é;;'-l" = 4pa’ft (3.29)
_‘Iﬁ;}d ___.xo/j;y The dependence of the parametera on I” and &

is found from (3.28).
) The linearized kinematic relationship for the
Fig. 1 problem being solved is

@h® — h°e +h° /08, = (1 + k) e
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and in this case it ia easy to write an explicit expression for ¢, and hence, for ¢°

o (U+mT o B 4kpT? o Ou’
a _2————_’/1.?1.1_2 , 631° = —Fr 12’ =~ (3.30)
Comparison of the solution (3.29), (3.30) is 20 k=0TJ P
made graphically. Pictured in Figs. 1-3 are de- 6(’57 ‘ //
o k05
1.5 —— 13 7
ﬂ 8 \ /
C~<4=05 / k=0
~N) or / )
N / 4
~N / L o
k=02
2.5 ——4
T~ = Thk=-0.29
T 0.0 J
T 3 g 1 2 r J
ot 4y ~TEEY
Fig 2 Fig. 3

pendences of the nondimensional quantities x = 2q, f; =s,,/1, f, =0,,/1 and the cormes-

. 2. [+ o [+ 1
ponding quantities x, f °, f,” on the parameter I" for several numerical values of the para-
meter k. It is seen from the graphs that larger elastic deformations in the fluid correspond to
larger values of the parameter k (for the same I'); the functions f, and f,° have one maxi-
mum each (in order for o,,"(F) to be manotonous here it is necessary that 02 > 01/9), down

to [ = 1 the theory with the linearized kinematic relationship yields an error not exceeding
10 %, however the error grows rapidly for large values of I,

4. Model with many relaxation times: Viscoelastic spectra. Let
us consider an element of fluid which consists of N subsystems. The elastic deformation of
the k-th subsystem is described by the tensor h(X) and the irreversible strain rate by e Pk,
The preceding analysis can be extended to this more general case exactly as is done in
linear viscoelasticity [4 and 21]. A sufficiently simple case is considered below. We write
the internal energy to the accuracy of cubic terms in h and the linearized kinematic relation-
ship as

Poll = Pollo + lekh‘“' -h%) 4 Z Agh®. h®) . .m0 (4.1)
k k1
Ah®) %
At + e"( = e, Lkl = K‘k, h' 'h = hiaz (4.2)

Sach expressions may be obtained from the more general case by reduction to nomal co-
ordinates (see [4 and 21]).
The expreasion for entropy production (T = const) cen be written as

TP, = [c— S u‘(")] et D gek). . epth) (4.3)
k k

g*®) = 2u,h®) 4 D) Ay [2hORG) 4 hOKW) (4.4)
3

Henceforth, the simple case of s Maxwell type model is considered when
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o=Slo®,  h=ger® 6, >0 (4.5)

Eqs. {4.2) and (4.5) may be solved for h*) by using Jaumann integration {Section 5 and
[22])
{

W ()= §exp(—

-0

t—1t
o) [e ()]
Substitnting h(®) into the axpression for o *®and taking account of (4.5) we obtain

545 (1) =2 S o (t — £)[e(t")]y; +28 S Pa(t— ¥, t— 1) [0 () ]ia [0 ()]ag (4:8)

-0 ~00
We have here. introduced the notation

b0 = 3 wyorp (—=)

K=

Py (2, 1) = 2 lk;[exp( e’ g;)-{—-—exp( t;.p)]

k=1 i k

In order to pass from the discrete to the continuous relaxationstime spectrum, it is only
necessary to replace the summation by integration, and the coefficients ., Aj, by the spece
tral relaxation functions pu(6), A(@,, 8,) =A(6,,0,).

Let us consider the behavior of such a model medium for simple kinds of flows.

Quasistationary Couette Flow Mode with Instantaneous Inclusion of the Strain Rate, In
this case

=ty e—grr0( D)

Here ¥ “is & constant shear rate, H () the Heaviside unit function, which equals zero for
t<0and 1 fors> 0.
The matrizant b (¢, t”) which should satisfy Eq.

2 . .
._6?.@(‘, )=—wog(t, 1), q’(tv‘)=l
is found easily to have the fom
‘coslay' (t— 1) —~sinlpy(E—¢)y O
@ )={sinlzy (t— 1) coslgy (t—t') U
0 0 1

aed is a matrix of rotation through the angle %y ‘(¢ = ¢*).
The stress tensor components (less the pressure) may be expressed in terms of the
spectral functions as follows:

[ce]
t, 8
sa={pO Tiidm, om—w=—2{s@TTGEe @
4] o

¢ 6 11022 (1, B) + ut(t, O
on=y 1O T 5“‘”8‘”’"‘(11943?‘ oo+

[e e Me )
L\ 010272 [0:057'v (£, 8,) v (¢, 0) + u (8, 81) u(2, 0,))]
+ —2—§ g A (81, 02) e 65 28, 0,

where we have introduced the notation
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o
BO)={ 10 nar (4.8)
0
t .
u(t,8)=—1—exp (-—* —6) (cosy't — 10 sin’t)

t 1
v(t, 0)=1—cxp ( - 3) (cos 1t 4+ e Sin T't)

It follows from {4.7) and (4.8) that both the normal and the tangential stresses have dam-
ped oscillations upon emergence into the steady flow regime. The first maximum of the tah-

gential stress is the largest and has the value:

g
’ Lad n

max 513:.5 l‘(e)’fﬁ'ﬁ??[i + exp("~ 2—6?*)](16
0

Let us note that apparently such oscillations were observed experimentally in the poly-
mer rheology laboratory of the Institute of Petrochemical Synthesis AN SSSR by G.V. Vino-
gradov and A.la. Malkin.

Formulas (4.7) end (4.8) simplify in the limit ¢ » o

o [v]

oy A 92y
5,2:5 ;(e)ﬁ%ﬁ:;de, Su—om=2 u(e)—ljr—-g;;;;;de (4.9}
] 1]
oo

6%y® 1 8%y V
b O TgmT 9 + ) BO TgeT @+
0
00

Gy ==

St B

1 ¢y C BBy (1 + 010277
+ Té ‘5 O B T e (I F 6D

The dependence of the effective viscosity n°{y") = 0y, {y"}/y " agrees with the dynamic
viscosity 7 ‘() (determined in the linear theory of viscoelasticity) for y '+ w. The quan-
tities 0y, and g5, in (4.9) are not equal, and are quadratic for small y" as y"'- 0. It is
interesting to note that the anharmonic terms do not yield a contribution to the tangential
stresses in simple one-dimensional flows of the considered medium. The difference %, ~
~0,,) agrees with the real part of the dynamic modulus G’(w) as ¥+ @. The agreement
between n° and 7", % (0, —0,,) and G"has been discussed repeatedly in the rheological
literature {see [19, 20 and 23], for example).

Let us consider yet another simple experiment on whose basis the functions o, {y") and
0,,(y’) may be estimated. Let a viscoelastic fluid move stationarily in the narrow gap of a
rotating cone-plane device customarily utilized for rheological investigations. Then, as is
easy to show for this case, the tangential and normal stress distribution is (4.10)

Poo=—P+0ufy), Pp=—P+ou(), P,=—PpP Pyp=0u) P,=Pp=0

Here the quantities oyy{y "} are defined in (4.9). From the equilibrium equations we have
a simple equation for the distribution of the isotropic pressure over the radius of the device

(the fact that the angular gap is small is used here)

doy Oy

op 1, G131~ Gan
T (2P, — Py — Ppa)=— r

Integrating this equation while taking into account that there is a free surface forr=R
on which p,, = 0, we obtain
Pp=0On+0x)In(R/r) {4.11)

Evaluating the axial pressure according to.(4.10) and (4.11), we find
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R
¥ n
Q= 2:!3 Poordr = — —— B8 (61 — ) (4.12)
1]

According to [24], results of experiments show that o, > 03, and 01y ~ 033. The late
ter inequality corresponds to the constraint A (6, 6,) > 0 on the binary relaxation function A
Let us note yet another curious fact. The results of many normal stress tests (including
those in [24]) convincingly show a logarithmic pressure distribution over the redius in the
cone-plane device. These tests thereby (see (4.11)) show the inapplicability of rheological

models in which the two-dimensional tensor 0, is a deviator in simple shear flow, for the
description of normal stresses (such a situation arises particularly if anharmonic terms in
(4.1) are neglected).

‘Let us now examine steady flow with simple tension of e film of viscoelastic fluid.

Let there be the following velocity distribution in the liquid film (x is the motion direce

tion, y the transverse coordinate)
ve=7% 2z, v,=yy (¥ = const

The strain rate tensor has the form
a! 0
e=17 (0 —i) (4.13)

In this case the vorticity tensor is evidently @ = 0 and the matrizant is c;S,, = 8“. On the

basis of (4.6) and (4.13) we have
o0} o0 o
0= 2ne -+ 2ve?, n= S o () dt, v :S S Py (£, ") drde” (4.14)
0 00

Formula (4.14) shows that Trouton viscosity, defined by means of o, , grows with in-
creasing ¥°, which alsc corresponds qualitatively with experiment.

By virtue of the evident approximate nature of the obtained equations, the description
of the normal stresses, non-Newtonian viscosity, etc., by such governing equations as in
Sections 3 and 4, can claim only qualitative agreement with experiment although they are
good enough for some materials {for instance, polymer solutions, see [19, 20, 23, and 24}

Moreover, the viscoelasticity theory constructed in this Section is based on the relation-
ships (4.1) and (4.2), which are constrained by sufficient smallness of the elastic deforma=
tions. If the value of the mean elastic deformation is characterized by the parameter I' = <>
Yo » where <f> is some relaxation time averaged over the spectrum, and ¥, is the charac-
teristic shear rate, then the domain of applicability of the constructed theory is bounded by
the inequality [" < 1. Since the values of <9> may be sufficiently large for polymer melts
and concentrated solutions, the domain of applicability of the theory actually turns out to
be bounded by values of sufficiently small y*. Reversible ruptures in the structure, thixotro-
py [25], may, in addition to the geometric nonlinearity noted above, give & substantial contri-
bution to the phenomenon of the viscosity anomaly in viscoelastic media of the polymer melt
type. Taking account of thixotropic effects in viscoelastic media can be done within the
framework of formal thermodynamics of irreversible proceases by following the ideas of [ 25},
however, this is outside the scope of the present paper.

5. Appendix. On the Jaumann integral, Let x* be an arbitrary fixed coordin-
ate system; let 4!, B, ! be some second rank tensors with mixed indices obtained from the
symmetric tensors A;;, B,, by the operation of raising the index. Let the tensor B,! be
given. Let us examine the equation in A,}:

IVECEL . . . i
(F7), = a7 +1"Vadl + 0iai— ALof =B}, 20} =V = Vo G

Here w, ! is the vorticity tensor, V, the operation of covariant differentiation. Let us

find the solation of this equation for a given velocity vector v! = v! (%, 1) and some inftial
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condition 4! = C,! at ¢t =ty Here C,! (x™ is some tensor independent of the time ¢.

Sach a problem of inverting the Jaumann derivative (i.e., the problem of constructing the
Jaumann integral) was considered schematically in {29].

The complete solution of (5.1) will be considered here by using a generalization of the
method in 122] and the solution of an analogous problem in a frozen Lagrangean system of
coordinates £*, Let us consider the solution of the problem in a fixed coordinate system.

Introducing the notation

o* . . .

o R
where I3,/ is the Christoffel symbol, and the extensive @ * = ||m‘,;'|| coincides with @ only
in a Cartesian coordinate system (evidently, d*/dt is the nontensor time derivative), we
write (5.1) in the matrix form

AA  d*A
An= @ + 0*A—Ae*=8B (5.2)
Let us examine the solution of the auxiliary matrix equation (5.3)

avfdt @(t, to; %)= — 0% (1, 2*) ¢ (¢, to; 2K),q (Lo, to; 2y = N; (2o, to: Y =1= 871

Following [10], let us introduce the *‘displacement function'’ x” ¥(x!, ¢, t”) which des-
cribes the position of a continuum point with the fixed Lagrangean coordinate £ at the time
¢t” under the condition that the point occupied the position x X at time ¢. Evidently the dis-
placement functions are solutions of the Cauchy problem {10}

ar® « ar®

ki, k
ot ;= =0 @ )y =2 (5.4)

From (5.4) it is easy to note that
z"" (1‘", 'r’ t") . :L'"I" (Ii, t t")
An iterative solution of (5.3) is

@, t: x*)=1~§

&

t
©* (t, x"‘)d:'+S ot (', 2 F)er (7, 2 Yydrar” 1 ... (5.5)
H

¢

SECY e

The quantity ¢ is customarily called the matrizant of the matrix differential equation.
Let ua note that according to (5.5), ¢ depends on x* only in terms of @*, where g is gener-
ally a nonsymmetric functional of @*. We shall henceforth omit the argument x¥ or the func-
tional argument @* in the notation for ¢.

The order of the variables ¢, ¢, in the notation of the matrizant ¢ is quite essential since
t denotes current time, and ¢, is the lower limit of the integration in (5.5). corresponding to
some reference point. The properties of the matrizant

LY (t, fo) 9 (tOv :1} =@ (!, t‘): q; (t! to) @ (tﬂ» t) =] (5'6)

are essily proved by using (5.5).
From (5.3) and the second property of (5.6) we easily deduce

d*/dt @ (to, ) =@ (fo, ) @*, @ (to, to) =1 (5.7
The solution of (5,2) with the aid of ¢ may be written as [22]
¢ t
A=ct S" . ¢; @*)B(, X)(t', ;; @%)dr =C+ S [B(t); @] (5.8)
* s
In particular

i
SpA=SpC+§Sp B(r, z)dt, SpA=dl
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It is interesting to note that despite the nontensor nature of the matrizant ¢ the desired
quantity A in (5.8) is of tensor nature because of the tensor nature of the Jaumann deriva-
tive and of the right side B in (5.2).

It is not difficult to show that the customary integration by parts formula with the scalar
function f(¢) holds for the integral in (5.8):

t

t .
5‘ |5 1]=re T e~ 5 [a 3] (5.9)

Let us consider an example. Let it be required to find the tensor o (x*, 1) by means of
the known tensor € from Eq.

A A
BIA—;’+0=2n(e,A—:’+e)EB,o ", n-0 (5.10)
From (5.10) we have
i
1 e t—r¢
o=5 S exp(— o )[B(t)]

—co
Substituting its value from (5.10) for the tensor B in this expression, and integrating
while taking account of all the tensors vanishing as ¢ + — o0, we obtain

t
0 01—6: t—1t
a=2’qée+2n 191’ S exp (-— 0 )[e(t'); ©*]

—00

Now, let us consider the determination of the Jaumann derivative and the Jaumann inte-
gral in a convective frozen coordinate system £X, Let a;; (£¥, ¢) and a!!(£X, t) be compo-
nents of the symmetric tensor A in the system £k, Let us introduce the three convective
derivatives

i
povic D% D _ 8

i Dt Dt = ot

Here 3y; is the moving Lagrange basis in the deformed space (Section 1). In general
tensors B(K) are all distinct, which is associated with the fact that generally

D D .
Dt 8k =26y, py 8% =—2¢" G-11)

Da.. . ii
Pl o Y @) Da
ij Dt Dt

(k) ._ plkinin
gk BP == 3{3310]

are nonzero.
Here @, are the components of the strain rate tensor with respect to the basis 3J; with

the fundamental tensor g,,(1). Let us note that the tensors B(1) and B(2) are symmetric,
while the tensor B(3) is asymmetric.
Now let us consider the symmetric tensor with mixed components

Da,

bi— L i p@ L w Da*
k=7 Ok + 05 =5 e B + gkl hy (5.12)

By virtue of (5.11) we may represent (5.12) in terms of components of the tensor A with
a different arrangement of the indices

i Da’i‘ @, i « i D’a’i‘
by = D +a; e, — ega;, = Dt (5.13)
ik ’ ik D ’
ik _D_a_ ix _k i Bk __ D'a LI D a
b= +a'%ep + ega™ = Dr u'—"ﬁ_‘i‘“ak_“ia‘:ET

Formules (5.12) and (5.13) define the Jaumann derivative D’/D¢ of the symmetric tensor
A with respect to the convective basis 3!, Completely analogously, the Jaumann deriva-
tive of the nonsymmetric tensor could be defined with respect to the basis 3:*. The funda-
mental properties of the Jaumann derivative
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. (1 ’ N
2_8.'_‘_") _ we D0ax Do
Dt =Y 4 Dt = "Dt

are easily proved.
Let us consider the question of inverting the operation of Jaumann differentiation in the

convective coordinate system with basis 3,!. Let us write the first equality in (5.13) in
matrix (tensor) notation
Da Da
D =Dt 4-ea—ae==h
Let us find the solution of (5.14), the tensor &, which vanishes at time ¢, by assuming
the tensors b and € known.
Let us introduce the matrizant Y (¢, to; &)= [|¢'.] (6, t5; £ as the solution of & prob-

lem with the initial data
DY/Dt=—e$, Pt to; £) =1=] 8] (5.15)

From (5.15) it is easy to see that { is generally a nonsymmetric tensor. The iteration
solution for ¢ is

(5.44)

t t t
—_ S e(r, Eydr + S ar § e(t, Eer, ENdi— .. (5.16)
ta to f‘ta

V(1) £ =1

Moreover, the tensor-matrizant ¥ possesses all the properties of the ordinary matrizant
since the matrix Eq. {5.15) is a system of ordinary differential equations. In particular, the
properties (5.6) are satisfied for i, where the equation for i (¢, t; &%) is

D/Diw, toi B = to, 6 E) e (t, B), Wlto, toi £) =1
It follows from (5.16) that ¢/ is a functional of @ and depends on £¥ only in tefiis of €;

hence it is natural to write {7 (z, ¢o; @). As above, it is easy to obtain the solution -of (5.14)

in the form .

t
a— Sw, ;)b (ES, )p (', 1 e)dr = S [b(t); e] (5.17)
fo 1o
Another tensor 'k'.(t, to ) could be introduced in place of the tensor 1/1‘. (8 tg; €)
however it is easy to see that
¥ =T

The symbol T here denotes transposition.
Just as had been done above, it is easy to find the solution of the tensor equation

Da/Dt+ha=Db, al,_, =0

(b is a given tensor, A a scalar constant) in the frozen £X coordinate system. The solution
of this equation will be

t
a— S exp (—A (t—t)) [b(); e]
29

Transforming in (5.17) from the f" coordinate system to the fixed x ¥ coordinate system,

according to the rules set up in [10], we obtain
t 5 2

ax € o o aBe e '™y 548
Ai.—-—...sﬁ ™ (2, 5 €) BS (£, 2) 9P, (1, t.e) Pl (5.18)
L]

Here 4.}, Byl, Y'\"), €)' are tensor components in the fixed 2 ¥ coordinate system; the
quantities x“X are displacement functions defined by the solution of the problem (5.4).
The tensor-matrizant i 8,7(t, ¢,, €) is defined by the expression
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t , t o R » 5.19)
i 6i S_af.:, - 2 g t .a._:.t.:.f ar + Y 4t ’ _?f.‘_ e¢ » z') ais_ e"( (2" t')‘a'f‘:'dt'(—
Y= J'"'t 9% B SELY ) > bax'“ s (7 az Y vV v add
o o

In combination with (5.4), Formulas (5.18) and (5.19) completely determine the solution of
the problem (5.1) for €= 0; however, they are considerably more complex than Formulas
(5.5) and (5.8) which were constructed on the basis of the nontensor matrizant ¢ {t, ¢35, @*)
However, it is more preferable to use the very simple Formulas (5.16), (5.17) in the frozen
coordinate system. Some connection evidently exists between the matrizants 1/, 116 i @)
and t;S.j"(t, tgs w* ), but it will remain unclarified here.

The suthors are grateful to G.I, Barenblatt, V.M. Entov, R.L. Salganik and others for
discussing the research.
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