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Within the scope of the customary thermodynamics of irreversible processes (TIP) (a linear 
connection between thermodynamic fluxes and forces, s~rnet~ of the kinetic coefficients), 
and utilizing the relationship derived herein between reversible, irreversible, and total 
strain rates, a system of governing equations is constructed for the simplest viscoelastic 
media in the presence of arbitrary finite reversible deformations. 

These equations are investigated in the case of sufficiently small reversible deformations; 
a “second-order” theory is constructed taking into account the physical RS well as the geo- 
metrical, nonlinearity in the system. It is hence taken into account that the kinetic coeffi- 
cients will be tensor functions of the tensor of reversible deformations. This latter Ieads to 
“deformation anisotropy” of the heat conduction and diffusion. Expressions are written down 

for entropy production in the system for the simplest model media, 
The “second-order” theory is extended to the case of isothermal deformation of visco- 

elastic media with many relaxation times. The solution of a number of problems for the sim- 
plest flows (simple shear, tension) of viscoelastic media showed a good enough qualitative 
agreement between the constructed theory and experiment. Also questions about tbe inver 
aion of the Jaumann tensor derivative (‘(‘Jaumann integration? are considered. 

A large quantity of papers (see the survey [l]) is devoted to a theoretical description of 
viscoelastic media. In the pheaomenological construction of a tbeory of viscoelasticity, as 
in the construction of continuum models generally [2 and 31, invariance considerations, the 
geometry of finite deformations, and thermodynamics are utilized, while tbe thermodynamics 
of irreversible processes (TIP) is used for dissipative media. Biot [4 and S] made a suffi- 
ciently complete investigation of linear viscoelaaticity under conditions of small velocities 
of this kind, 

Let us refer to the work of Kluitenberg iu which the thermodynamic derivation of govern- 
ing equations for various media is expounded [S to Q]. 

Among the earliest investigations on the nonlinear theory of viscoelasticity is the paper 
[lo]; however, the kinematics of viacoelastic phenomena remained unclarified in this work, 
and there is a total absence of a thermodynamic analysis of the phenomena. 

The development of a theo 
Y 

of nonlinear behavior of dissipative media is often connec- 
ted with the extension of TIP 111. in opposition to such a viewpoint, an attempt is made 
herein to utilize the customary version of TIP with linear phenomenological laws and Onsa- 
ger reciprocity relationsbipa, to derive the govemiag equations of n nonlinear viacoelaatic 
medium with physical and geometric nonlinearitiea. 

We shall often rely on [2 and 121 without detailed referral in expounding the theory of de- 
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formation of dissipative m&a aad TIP. 
It is known that assignment of a state function of intsrnaIIcnergy or entropy type8 (or of 

other thermodynamic potentials), which depend on the temperature and external-parameters, 
is fundamental for the thermodynamical eqnilibriam processes. For small deviations from 

equilibrium (“slightly dissipative” media) it is possible to assume conservation of sad a 
description with the aid of the state function. 

First, it is generally necessary to increase the quantity of governing parameters (for ex- 
ample, to include some internal parameters among the argument8 of the state function); see- 
ondly, it is ncceesuy to give, in addition, the dissipative fanction which describes entropy 

production in a thermodynamic system. 
The specific internal energy is selected as the state function; and it is assamtd that it 

depends only on the specific entropy r and the reversible part of the deformation ‘8,,* with- 

out additional internal parameters, i.e., the dependence u(s,E) is similar to that which holds 

in a nondissipative elastic medium. Only the lowest terms in the deviation from equilibrium 

are kept in the expression for the dissipation. 
Such a thermodynamic consideration of a viscoelastic medium has analogy with the stat- 

istical approach to its hydrodynamics, when the description using a local equilibrium distri- 
bution is selected as the origina diotribntion, and relaxation processes arc taken into ac- 

count as small deviations from this equilibrium distribution f13]. Let us note that the assum- 
ptions made essentidly differentiate the viscoelastic medium under consideration from a 
medium with plastic deformations since the characteristic pecmiiarity of this latter is the 
dependence of the internal energy on at least the irreversible component of the deformation 
as well [S and 91. 

1. Kinematics of finite deformations in a viscoelastic medium. 
Following 121, let us determine the reversible deformation in a medium particle by using 
some imagined, or actually producible process of unloading from stresses of a small particle. 

Let us define the unloading process of the given particle of the medium as its being re- 
leased instantaneously from stresses and waiting during an infinite time interval. If the to- 
tal deformation in a particle is e,, (6,) at time tu, then at to + 0 it changes by an “instantan- 

eous” elastic component, and furthermore, for t > t ,it will be released from “delayed” eles- 
tic deformation, so that only one irreversible deformation component #J,,P remains in the par- 

ticle as t + 0~. The difference IS~~P- erj = EJ’ defines the reversible component of the 
deformation. The quantity eljo is determined experimentally in precisely this fashion (with 

the sole exception that the test lasts a finite time). 

Let us introduce a Lagrangean *‘frozen” coordinate system [t, &J1 63 and let us con- 
sider three positions of the continuum relative to a fixed x1, x*, ~3 coordinate system with 

the vector basis a1 and the fundamental form 

Cjsr = gt,dx”dxi 
1) The initial position at time t0 < t with basis 30f, fundamental form d%* = g,,(O)dt’ 

de ; 
2) The deformed state at time t with basis 3ri, fundamental form dsl* = gtl(l) (p, t) 

dt’diff; 

3) The “unloading” state at time t + 00 with basis 3,t and fundamental form da,* = 
= gf,(*) (& t + -1 dc#dtf. 

.&cording to the terms of the introduction of the Lagrange baais a,* we have ds * = da 12 
by virtue of the contianum motion .d = X* @ , t). 

The reversible, irreversible and total components of the deformation are 

The space 2 is a space of final states for irreversible deformation, and a space of initial 
states for reversible deformation; the space 1 is a space of final states for reversible, aa 

well as for the total components of the deformation. Let us introdace the tensom of reversi- 
ble ec, irreversible ep , and total 18 deformation 
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e = eij31i31j, uc = eljQ1i31j, 8P = t~jP3~'3& 

for the various deformation components in the spaces of final states. 

Here 8lj (E&r 0, 8; (EL, t), 8r. (E”‘, 0 are defined by (1.1). On the basis of fl.l), 

for the components of these tensors de/ined in different spaces we will have the component- 

wise (matrix) equality 

E{j* + QP = etj U-2) 

Let us apply the operation of “convective differentiation” in the time D/Dt for the con- 
stant Lagrange coordinates 5” to (1.2) 

DCijC D%jP DE.. 
-+-=L= 

Dt Dt Dt % 

Let us define the strain rate tensors in the final states 

(l-3) 

DE= 
e = eir31i31j, u1 = Dt De{; 31i31 j DEP 

, DeijP 3 i3 j 
z=Dt 2 a (1.4) 

Utilizing (1.4), we pass from the noninvariant (matrix) Eq. (1.3) to the tensor equation 
[2]. To do this we introduce the local basis aI1’ in the unloading space 2. then denoting the 

:omponents of the tensor D8P/Dt in the basis 3,’ by y,,P we obtain 

(1.5) 
Here the tensor C with matrix IIC_a’pll d e f ines the transformation from the covariant ba- 

sis vector 3,* to the vector basis 3,a according to the law 3at = Cq&, . The space 

1 differs from the space 2 by elastic deformations C and elastic rotations of each particle 

of the medium, hence in the basis 3,’ we have the following representation for the tensor 

c [2]: 

C == exp [k] l/g - 2te, k = kij31i31j, g = gi,(1)31i31j (1.6) 
Here k is the antisymmetric tensor of elastic rotations; g is the fundamental metric ten- 

sor. Substituting (1.6) into (1.3), we obtain the tensor equation (*) 

Dt’/Dt + (g - 2tc)‘l? exp [- k] yp exp [k] (g - 2~3’;~ = e (4.7) 
Passing from the frozen 5“ to the fixed .zk system, taking account of the transformations 

for convective derivatives [2 and lo], we have (I.82 

dt”/& + 6M - 80~ + ed + see + (g - 2te)‘/yexp [-k] rpexp [k] (g- 2eC)‘/*=e 
Bere the tensors u’, e, g, k, y, o are defined in the zk system and have the covariant 

components Ef,S et), 5)’ k,,. YIP, ofjt where 

d 

dt= eij = + (ViV, + VjVi)* 

vaare velocity vector components, e,j strain rate tensor components, ]I o,I 11 the matrix of 

the vorticity tensor, 0, the symbol of convariant differentiation. 

The kinematic relationship (1.8) defines the desired connection between the elastic, ir- 

reversible, and total tensor characteristics of the deformation. In contrast to the matrix re- 
lationship (1.31, the irreversible strain rate in the tensor relationship (1.7) is connected 
nonlinearly (because of the reversible deformations, and elastic rotations of an element of 

the medium) to the total strain rate and the rate of elastic strain. 

Later we shall consider only such kinds of media whose macroscopic state is indepen- 

dent of internal rotations, and therefore of the quantity k. As will be seen later, governing 

equations of such media, without the tensor k, may actually be obtained. 

Let us introduce the new tensor 

l ) 1u.A. Bnevich has obtained an analogous equation, where the kinematics of finite elas- 
toplastic deformations is considered somewhat-differently for Maxwelliau media. 
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ep = exp [- k ] p exp jk] = ~~~3’3’ (1.9) 
It follows from (1.9) and the symmetry of yp that eP is symmetric tensor; all three invar- 

isnts of ep coincide with the invariants of y, however the principal directions differ by the 
magnitude of the elastic rotations. 

It is convenient to take the Hencky tensor h, which is an isotropic function of the tensor 

tC * as a measure of the reversible deformation: 

h= - 1/s In (g - 2q (1 .lO) 

The principal axes of the tensors h and t” coincide. 
Inserting the quantity @ according to (1.9) into the fundamental kinematic relation (1.8), 

replacing tee. by h according to (l.lO), and multiply~g on the left and on the right in this 

equation by the nondegenerate matrix exp[tt], we obtain 

-$+eP -e=f(h; to, e, $) (1.11) 

2f = exp [h] -&xp I--- 2hj)exp [h] + 2 $ + 2oh- 

- 2ho + exp [h] o exp [- h] - exp [- h] o exp [h] + 

i- exp Ihl e exp I- h] + exp (-- h] e exp [h] - 2e 

Here and henceforth, tensor (matrix) products are introduced. The Jaumann derivative 

(1.12) 

is denoted by the symbol h/At. 
The distinguishing property of the Jaumann derivative is 

(Ag I At),, = 0 (1.13) 
The tensor f from (1.11) possesses the following properties: f is a symmetric tensor, 

i.e., h, = f,,. 

The scalar product of the tensor f by an arbitrary function #St) is zero, i.e., 

cPif fh@) ffj = 0, g”frj=Spf= 0 

For sufficiently small elastic strains (h = aR, cz < 1) 

2f=h’e-2heh+ehe+O(h%+...)+ 

(1.14) 

+ hoh” - h”oh + l/3 h% - I/3 ohs + o (it% + . , ,) + 

(1.15) 

Taking account of (1.11) and (1.12), Formula (1.15) shows that for sufficiently small rc- 
versible deformations the right side of the kinematic relation (1.11) contains tenno two or- 
ders higher than the terms of the left side. 

When the kinematic tensors o, e and d h/d: commute with the tensor it, f m 0 holda. Such 
a case is realized, say, in affine deformations of the medium, when the directions of the 
principal axes of the tensors 8, h and dh/dt coincide or are fixed in apace, and ~1= 0. 

Contracting the kinematic relation (1.11) according to anbscripts, we obtain 

d&a f dt + rag = ea. (l.iS) 
Introducing the notation pe, p t, ~2; go. gz, g2 for the densities and determinants of the 

metric tensors in the initial, deformed and ‘*unloading” stataa, respectively, we will have 
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(1.17) 

Substituting these expressions into (1.16). we obtain an identity of obvious physical 
meaning: the sum of the reversible and irreversible volume strain rates equals the tote1 vol- 
ume strain rate of the medium. 

As will be shown below, the introduced tensor c,, P is defined uniquely in terms of the 
observed kinematic (strain rate tensor c,,) and dynamic (stress tensor o,, ) quantities. 

Hence, despite the fact that the tensor of elastic rotations A,, remains undefined in 

terms of these qusntitfes, components of the irreversible strain rate tensor in the unloading 
space 

D#/Dt = exp I-h] d’ exp i--h1 
can easily be determined by means of the transformation formulas (1.5). (1.6), taking acc- 
ount of the definition of c#. 

Let us note that the kinematic relations (1.8) and (1.11) in the two limit cases ee -D 0 
(k + 0) or YP + 0 go over into the kinematic relations for a viscous fluid and a medium with 
reversible elastic strains, respectively. 

2. Expres~loa for entropy production in a system. Simplest vis- 
coelastlc models. Common to any type of continuum are the equations of conservation 
of mass, momentum and total energy 

dp % dvt %3 dw 
-Ji-=--Pa,89 m-=az,’ P 7 = q a ( way - $4 (2.1) 

Here p is the density of the medium, vo the velocity vector components, a,, the stress 
tensor components, w the total energy of unit mass, qp the heat flux vector components. For 
simplicity the equations are written in e Cartesim rectangular coordinate system. 

The stress tensor in a medium without internal moments is symmetric a,, = a,, , and the 
total energy consists of the kinetic energy and the internal energy of the medium pm = %p 
v,’ +pu. 

The principal difference in the various model media is in the specific internal energy u. 
As has already been said, we shall consider that medium in which the specific internal en- 
ergy depends on the specific entropy s aud the Hencky tensor h of the reversible deforma- 
tion u = u (r, 4,) (here the choice of A,, instead of eIje is made from considerations of 
convenience). The Gibbs relation may be written as 

du 
-= 
dt Tr$+$18 (2.2) 

Utilizing the equations of this Section it is easy to obtain sn equation for the specific 
entropy (2.3) 

Here a =j,is the strain rate. P, the entropy production, which according to the second 
lsw of thermodynamics is poaitfve for nonequilibrium processes and vnuishes et equilibrium. 
The uniquenens of the isolation of the expression P, es the entropy production in (2.3) is 
based on the invarimce of this expression relative to the Csfileo transformation, and on P, 

vanishing for themtodynatic equililxinm 1121. In th e case of mu isotropic medium, the sce- 
lu function of the internrl energy my depend only on invuisnts of the l tmiu tensor 

II = has, 1, = k&eo, I, = hs&Aa 

Thsn du/dt 1, can be written l m 
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Here the O,le are components of the “elastic stress” tensor. 

In order to extract the independent thermodynamic forces eutd thermodynamic fluxes COP 

rectly in the expression for ‘the entropy production let us utilize the fundamental kinematic 
relationship (l.ll), and let us divide the tmsor quantities into global and deviatoric parts. 

For example 

Qff = $1’ + V&x&,, Qaa - '-0 

Then the expression for the entropy production is rewritten as 

It is now possible to proceed to obtaining the governing equations of the medium. For 
a thermodynamic approach to describing it, the quantities 04, o,~‘aud dT/i)xp in (2.5) 

for the entropy production play the part of thermodynamic forces, c 
thermodynamic fluxes. According to the customary linear theory of %?!& ,“,” z&n?%ed 

by linear phenomenological relationships [ 121. which, in particular, yield the governing eq- 

uations of the medium. 
By virtue of the Curie principle, the phenomenological relationships for scalar, vector, 

and tensor phenomena separate in an isotropic medium. Taking account of the Onsager re- 
ciprocity relation [12], we obtain for the scalar phenomena 

6 
c 

aa - baa = aleaa + WaaP, 0 a: = aa& + tWa~ (2.6) 

for the vector phenomena 

Qi = - x (dT / Bxi) (2.7) 
for the tensor phenomena 

bij’ - of; = ble$ + b,e$, %P’ = b2eu’ + b3e$ (2.8) 
The kinetic coefficients X, ok, b, are generally functions of T and Ik (h,!). 
Entropy production becomes a nonnegative-definite quadratic form (a,. & are easily 

expressed in terms of a k, b, 1 (2.9) 

TP, = &lea: + 2azea&,w + a&$ + PI&$ + @ze&,~ + &a$ + xT1 (8T/aQa 
Conditions for positive-definiteness of the quadratic form are 

x >0, a, >0, b, >O, alaS >azp, b,b, >b2, ~1 ~0, fh ~0 

(230) 

The inequalities (2.10) (part of which may be weakened in various particular cases) are 
sufficient also for a unique definition of the flows in terms of the thermodynmuic forces. 

Taking account of the inequalities (2.10). the kinematic relationship (1.11). and the ex- 
pressions (2.4) for o,,*, Eqs. (2.6) and (2.8) are a closed nonlinear system of rheological 

eqnations of some isothermal model of a compressible viscoelastic fluid, which is as shown 

below, describes retardation and relaxation. 
Let us consider the equation for the medium temperature. 
Let us determine the specific heat for a constant reversible deformation 

c,,= (ff),=T(-&), 

Transforming it by utilizing (2.3). we obtain 

idhe 
PC, g+PT($-)-F = ~a (XV-J’) + TPa’ 

(2.11) 

(2.12) 

TP,’ = TP,- x (v@T)~ 
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From the condition of intagralllity of the specific free energy u - Ts WC have 

(&), =I(+& 
Then (2.12) may be transformed into 

Pch -$ = Va (~v=T) + TP,’ + pT (2.13) 

Formula (2.13) shows that the thermal effect in the deformation of the viscoelastic me- 
dium coaaidered is due to the diasipative term, es well as an additional term, which appear 
particularly sharply in rapid changes of tbc mode of medium deformation. Great heating has 
actually been observed [ 141 in rotational viscosimettra during a sudden stop in the flow of 
viscoelastic fluids of various kinds. 

We can introduce the specific heat for a constant tensor T = a*/p (which corresponds to 
constant stress in Maxwelliau or elastic media), which is connected with ch by means of 
the relationship 

c_= ch- T 

The heat conduction Eq. (2.13) becomes 

(2.14) 

When the elasticity in the medium is of entropic nature, as may be in the flow of polymer 
solutions and melts, for isothermal deformation 

From this results T,, = 7,,‘T/T, (the superscript’ shows that the tensor T,,O is refer 

red to some “initial” temperetnre T,). In combination with the above-mentioned rheological 
Eqa (2.13) or (2.14) describe nonisotbemal behnvicr of the considered viscoelastic medium. 

The system of Eqs. (l.ll), (2.4), (2.6) and (2.8) d tscrfbes the nonlinear behavior of a 
medium poasesoing stress relaxation and aftereffect. Let us show that in particular cases 
the nonlinear Maxwell model with relaxation time, and the Kelvin-Voigt model with retarda- 
tion time can be obtained from these equations. 

1’. Nonlinear Maxwell Model. Letasset 

51 = ia, = b, = b, = 0, aa > 0, bs > 0 

in (2.6) and (2.8). 
Then using the notation b, = 211, a3 = 32 (11, [ shear and volume viscosity coefficients), 

we obtain 

The system (2.15) l hews that the stress tensor in a Maxwell fluid is connected with the 
elastic strain tsusor jnst as in the equiiibrfum case of a purely elastic medium, and the 
tenaor q,s characterizfng the irreversibls l trafn rate is also connected with the stresses 
by Newton’s law, ai in the case of a vfscons medfnm. 

The expr44sion for the dissipation takes the simple form 

As follows ‘from Sactfon 1, e$ = &z holds, i.e., the elastic rotations of elements of 
tbe msdims do not affect the rdoe of the disdpatfon. If q, b are expressed in terms of v 
according to (2.15) and subatitated into the kinsmatic relation&p (1.11), we then obtain 
the rbsolo+l’sqaation of a Maxwell flufd, wbieh eonneeta ths stress tensor with the total 
stmin rats tennor. 
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24 N o II 1 i n e a r K e 1 v i n-V o i g t M o d e 1 (see also [15]). This model can be 

obtained by the following formal means. Let us set ep= 0 (yP= 0) in (2.5) and the kinema- 
tic relationship (1.11). Then we have 0, = qs,” + aeacr in place of (2.6). Analogously, 

Olj ‘= 011 “+ be ‘. Furthermore, let us use the notation (I = 35, b = 27. For yp = 0 there 

holds se = e zd the kinematic relationship (1.11) becomes (see also (1.8)) 

g+aE-eem+ee+ee=:e (2.17) 

This is the expression for the customary connection between the finite strain tensor and 
the strain rate. The corresponding rheologlcal equation will be 

a=oe(h)+2rle+(~--“/3’l)(Spe)g (2.18) 

In combination with the heat conduction equation, the system of Eqs. (2.17) and (2.18) 
is a closed system of thermorheological equations for a compressible viscoelastic isotropic 
medium with aftereffect. ‘Ihe expression for the entropy production is 

(2.19) 

A relationship of the type (2.18) h as been obtained in [15] for the case of large elastic 
deformations. 

In concluding this Section let us make two remarks. 
1. Phenomenological connections between the stresses, total strains and their total time 

derivatives, obtained on the basis of an expression of type (2.4) for the entropy production 

without the kinematic relationship (l.ll), b ecome very ambiguous. This latter follows, say, 

from the fact that 

'pij (‘1 (w)tj = Ttj (E)‘I’ik (8) (s),i = ‘plj (E) $jk (P) % 

while 

(2), f SIk (‘I ($),j 
The arbitrariness in selecting the thermodynamic .forces which appears in the absence of 

the kinematic relationship leads to great arbitrariness in the rheological relations obtained. 
In the presence of the kinematic relationships (1.11). independently of the selection of 

the measure of reversible strain, the final rheological equations are obtained completely 
uniquely as a result of the above-mentioned procedure. 

2. In general, the results of this Section refer to the case of weak nonequilibrium; it can 
only be hoped (as the examples presented below indicate) that they have a sufficiently 
broad domain of applicability for viscoelastic media. In the more general case it is apparent- 
ly expedient to use the-methods elucidated in [ll]. 

3. Governing equations for simple viscoelastic fluids in the pre- 
sence of sufficiently small reversible strains. Let the reversible strains 
in a viscoelastic medium be sufficiently small as compared with the total strains. Such a 
case is realized in weakly elastic fluids as well as for sufficiently slow motions. Formally 
expanding the kinematic relationship (1.11) for sufficiently small h and discarding terms 
whose order is h2 greater than the rest, we will hav’e-the “linearized” kinematic relation- 
ship 

Ah/At+eP=e (3.1) 
For sufficiently small b the function u(s, b) can be represented with cubic accuracy as 

POU = POUO (8) + c11s + Wd1= + =/a &I, + &III, + =/&I~s (3.2) 
Here p. is the value of the medium density in the undeformed state at the temperature T, ; 

p is the shear modulus: K = X0 + 2/3~ the modulus of multilateral compression; X t, X2, A 3 
the characteristics of the “anharmonic part” of the internal energy. 

According to the requirement for thermodynamic stability of the ayatem, the expansion of 
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u in terms of h starte with quadratic terms in which g and K are positive, but the signs of 

the X, arc not definite. 

Now evaluating EI,~ * on the basis of (2.4) and utilizing (3.2), we have 

PO/p~$= (A011 + h2J2 -t h112)61j +2(P + bJl)hj + &bJhxj (3.3) 

It is seen from this expression that keeping just third order anharmonic terms in the ex- 
pansion of the internal energy in terms of the strain h corresponds to the accuracy of the 

*‘linearized” kinematic relationship (3.1). As in (3.11, there are lower order terms in h in 
(3.3) and terms whose order is hz greater than the rest are not taken into account (*) 

It is easy to separate 00 intc spherical and deviatoric parte 

po I PJLZ: = (3&l + 2p) 114 (3h, + w 12 + @A2 + 313) IIS 

Relative to the spherical part it is reasonable to expect that at low pressures the irre- 
versible volume changes are insignificant, i.e., c =o= 0. Then according to (1.16) and 

(2.6) 

a aa - a,,B = ae,, = dh,, / dt 

Utilizing (3.4). aa0 can hence be eliminated, and an equation relating ass and I, = boo 

can be obtained: 
(3.5) 

This equation describes the volume aftereffect in the medium. Since e& = 0 we have 

I, = h, = ln(~o/~), then for small deformations (3.5) passes into the nonlinear Kelvin-Voigt 

equation relating the volume strain to the isotropic pressnre. In the more general case, when 

it is impossible to neglect irreversible volume changes (e&’ 4 0). it is necessary to use 

the system of Eqs. (1.161, (2.1). (2.6) and (3.41, which describes relaxation of the pressure 

and strain rate, in order to describe volume effects. 

Let us here consider the simpiest case also for the deviatoric stresses. Let us assume 

that in the expression for internal energy the anharmonic terms may generally be neglected 

(+*I. Then Hooke’s law u,, *‘= 2ph,, ‘holds for the “elastic” stresses, and it is easy to 

eliminate enand h from the system of Eqs. (2.8). We hence obtain the rheological Eq. 

In deriving (3.6) the csse of an incompressibie medium (p = po) was considered and the 

coefficients in relationships (2.8) were assumed constant. The coefficients 8,, 8, and 7 in 

(3.6) are connected with the coefficients of (2.8) as follows: 

01 = b,l ($t). e 2 = (4h - b22) / (411d. 2q = b, + 2b, + b, (3.7) 
It follows from the inequalities (2.10) and from ,u > 0 that 

‘1 >o, er >ez >0 (3.8) 
i.e., the positiveness of the viscosity coefficient and the relaxation time, and the fact that 
the stress relaxation time is always greater than the time of the aftereffect of the strain 

rate. 
An illustrative model of one elastic spring and two viscous elements in two equivalent 

l ) It is understood that only terms which do not raise the order of (3.3) as a whole are 
kept in the expansion of p in terms of h. 

**I Within the scope of the expounded phenomenological theory, the satisfactoriness of 

such an approximation was not clear before; comparison of the consequences of the 

model equations with experimental results will be elucidated below. 
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versions corresponds to the linearized Eq. (3.6) at low flow rates: in one version the Max- 

well element connected in parallel with one of tbc viscous elements, can be fsolated, and 
in the other the Kelvin-Voigt element, connected in series with a viscous element. 

Model equations similar to (3.6) have beaz repeatedly relied upon, and not withont SUC- 

cese, for the description of viacoelaatic fluids fI6]. However, as will be shown below, these 
equations do not describe correctly enart& such an important property of viacoelaatic 
fluids as the normal etreasea. In those cases when the effect of the normal stresses plays 

a large part,.refiaed equations are necessary. 
There are several formal possibilities for refining the equations by remaining within tbe 

scope of the kinematic relationship (3.11 linear in II. Two of them cancera refinement of the 
phenomenological relationships between thermodynamic fluxes. One is to keep qoadratic 
terms in the thermodynamic forces for fluxes) in relations of the type (2.6) to (2.81; ouch 

a method extends beyond tbe scope of customary TIP theory. 
The other method within the limits of this theory is to take account of the dependence of 

the kinetic coefficients on the elastic strains h. Elastic strains result in a defo~atioaal 
auisotropy of an initially isotropic medium so that it is necessary to generalize the relation- 

ships (2.6) to (2.8). In the incompressible case (ew= 0, b= 01, the relationships for the 

stresses become, with linear accuracy in the strain h, 

Still another possibility is to take account of the anharmonic members in the expression 

for the internal energy. As an illustration, let us write down the equation for an incomprer 
eible medium by utilizing the relationship (2.81 with constant kinetic coefficients and elas- 

tic stresses (3.31 

Tbe relationships (3.11, (3.41 and (3.91 possess the same accuracy in h. Within the lim- 
its of this same accuracy, they can be utilized to obtain an equation connecting It with the 
strain rate e for an incompressible medium 

( :i 
$f ij + $h,j + h168-4pba1 (hh),$.+ “*ar~9babz’ (heIt, -_ ve,, 

263’ (3.11) 

The abbreviation (Pq)ij = &Qaj f Qfa&xj - ~/~~~q=~~~j is used here. In deriving 
(3.111 it turns out to benecessary to impose tbe following constraints on the coefficients 
which originate from the condition of disappearance of the spherical parts in (3.11) 

2bal-t 3&z = $. ba, Bar + 3632 = y$bJ (3.12) 

Utilizing now (3.111 and (3.121 and the same relationships (3.111, (3.41 and (3.91, the 
expression for the stress o,, (after subtracting tbe isotropic pressare) can be written sa 

crfjv= &-Z 
( )etj+2~(~+~)~tj+ (3.13) 

+ ws&4+ ~~-~~(~~~-~~l) 

zba' 
GWij + + (1 + -$) fi,&, + 
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The obtsintd system of (3.11), (3.13) is the governing equations of the medium which 

conuecta u and e by means of the tensor parameter h. According to (2.5) the dissipation in 
such a model, to the accuracy of terms of two orders in b, will become (isothermal case) 

Terms with coefficients bll, bZZ, b,, do not enter the expression for the dissipation 

in the considered incompressible case. 
To the same quadratic accuracy as before, the parameter h can be eliminated from (3.11) 

and (3.13) and the equation connecting II and e can be written explicitly 

The coefficients 0 t , Qzt 9, ck ate expressed in terms of the nine initial coefficients 

or At, b,, b, b,, btt, b,? blip b,,. In the particular case when the coefficients of the 

last two members in (3.13) vanish, then cg = ca = c, = ca = 0 and the seven coefficients in 

(3.15) are expressed in terms of the aeven original coefficients. 

It is interesting to compare (3.15) with the equations of the Oldroyd eight-constant mod- 
el [I?]. Eqs. (3.15) possess a number of evident differences from the Eqs. in [17], for exam- 
ple, there are nonlinear terms in the stresses aud terms with products of the stresses by the 
acceferation in (3.15). Moreover, despite the high arbitrariness in selecting the constants, 
(3.15) do not actually contain many particular cases admitted by the Oldroyd equations. 
Thus, by virtue of the existing relations between the coefficients ck and bkl it is impossi- 
ble to obtain the equations of the “covariant” and “contravariant” models introduced by 

Oldroyd [ lo] from (3.15). 
The exposition is here conducted under the assumption of isothermy. If there is s non- 

uniform temperature distribution 7’ in the medium, this then results in the occurrence of a 
thermal ffux q, ; 

qi = - (X06x + xl&a) VET (3.16) 

The dependence of the heat conduction coefficient x on the reversible strain h is taken 
into account in (3.16) in a linear approximation. The influence of the strain results in a de- 
formational auisotropy of the heat conduction process even in a medium with isotropic struc- 
ture. It is interesting that such a situation should concern not only solids but also elastic 
fluids. Analogously also for the diffusion process. 

Let us now consider some particular cases admitted by the model Eqs. (3.11) and (3.13). 
In the case of a linear connection between the “elastic atresses” and the reversible 

strains (X, = 0). and if in addition we set b,, = - V, 
in [18] are obtained. According to [18], the 

bll, equations of the same kind as 

fl ow of weakly concentrated suspensions of 
slightly deformable elastic particles in a viscous fluid is described by such equations(*). 
It is easy to obtain equations in the same form as in [IS], directly from (3.11, (3.4) aad (3.9) 

(-$)ij + .$ &j = (I + +) eij + * (he)~j -bal h { $zj (3.17) 

*I Let us note that the specific numarfcal values for the coefficienta in the equations from 
[18’] do not agrea with the possible values of the coefficients in (3.17). 
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oij = (bl + 2bs + bs) eij - (bs + bs) (s),j + 

+ (bu + 2b21+ ball {he),j - &I + bt.1) {h$}ti 

Since these equations have been obtained approximately both here and in [la], there is 
ho special reason for keeping them in the form (3.17), and the first equation can be solved 
approximately for Ah/At and it is poesihle to go over to Eqa. of the form (3.11) and (3.13). 
In this case cJ = c, = ce = cs = 0 in Eqe. of the form (3.15). 

If we add b,,(b,+ b,)= b,bzl - b,b,,= (bSbll - b,b,,) b3/b1 = f y (l+ 8) bS2 

to the previous assumptions about the coefficients (x, = 0, b,, = - 2/3 b,,), we thereby 

arrive at the model equations discussed in detail by Bird et al. (for example, [ 191 and [ 201) 

(3.18) 

The peculiarity of this model is that the terms bef vanish in the case of a Maxwell type 
model 6,, = a,, 0) while the formal equality 8, = 0 does not affect these terms (for 8, = 0, 

Eq. (3.18) describes only stress relaxation, which is customarily associsted with Maxwell 

type models). The reason is that b,, f 0 for 6, = b, = 0 (8, = 0) by virtue of the constraints 

imposed earlier on the coefficients, and therefore, cr,, f u,, e because of the nonlinear terms. 

Another peculiarity is that in such a model u_= 0 in one-dimensional steady-state sheu 

flows. It is possfble to branch off easily from this by considering b, 2 f - y b 11, .then 

spherical terms of the form 

e,b*gjj, eag s,&j, raQ II (Ae I At)ag &tj 

will appear in the equations. 
For the model with Eqs. (3.18) with T = const, the expression for entropy production to 

the accuracy of terms of two orders is 

(3.19) 

Let us consider another kind of particular case when nonlinear members with { hhj and 
(he) drop out of Eq. (3.11) for h, i.e., when b,, = b,h, / 4& b,, = b.& / 4~ (by virtue of 
(3.12) this is equivalent to the requirement that b,, = b,, = 0). The equations of the mod- 
el become 

( g)ij + g 4j = (1 + $) eij (3.20) 

otj= (bl-z) eij+2p~lj+L(i+$)hi,h,j+ 

+ (blr -E) (hi,,e,j + eiah=j) + b&,ge,$ij 

In this case (T = conat) the dissipation is 

TP, = (bl - z) e,; + F h$ + F horahalhYDL + 2 (bll - ‘E) h,+,e,q, cIrr (3.21) 

For b,, = 

-(b, - 
0, b,, = k,b,z/ (4 pb,) Eqa. (3.20) reduce to equations for et, cmd s,, mu,, - 

b, 2/bg) e,, : 

As 

( 1 
L\t ~j-~(i+~)a(si.e,j+ei.s,j)+ (3.22) 

2P 
+~rtj+&(l+*)st~s.j=(i+*)etj 

Here the case b, = 0, s,, = q, corresponds to a model of Maxwell type b,, t u,,e ),, i.e., 

is described by equations of the sms type. 

Utilizing the concept of the Janmsnn integral (see Sectfon 5). ws msy pass from a differ- 
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anthI to a functional demuiptfon of the model eqnatfoike. 
Thea, Eqa. (UO) me “aolvad” aa followa (for l implicit]r we act b,, = 0, b,, = A, bz2 / 

(4pbS)): 

afj(fl=(61-~) '*jtr)+'P(' +$) \ 1eWlij + 

has baca fntrodnced for the Janmmn integral, where 4 is the matrizmt, which satisfies 
Eq- 

‘Vii (‘1 “I/ ” = @+a (t) qaj tt* 0, CPtj Q's t 1 
' qj 

in the case of Cuteoh coordinatea. 
‘I$e modal equatfona in the form (3.23) are analogous to the e 

P 
ansions of hereditary 

iuncdonala in faactionsl sarfea utilized in the literature (see e.g. 11). In addition to (3.23) 
it ia not difffcalt to wrfte MI expnaaion for the dissipative functional b using (3.21). 

Up to now the wpomition haa relied on linear TIP relatioaahipu in tha fluxes and forces. 
However, it is easy to eee that taking account of the next terms, quadratic in the forces 
(flusea), will not introdaca additional difficnlties but will just inaeaee the arbitrariness of 
the coafficiaata. The aew feature of the equationa will jnat be the fact that terms of the 
{ SO$ type will even occur fn the equation for hit (compare with (3.11)). On the other hsnd, 
one ‘ thasnodynanic nonlinearity” in the linearized kfaamatic relationship of the quadratic 
internal enargy and constaut kinetic coefficients may result in a net of models with equations 
aualogooe to (3.11) md (3.13). 

Aa an illaatration, 1st am consider the case when the whole nonlinearity is due to the 
violation of the cmaaed ymmetry betwear two phenomena (although the Onaager relation- 
akipo am &id). Now, let (2.6) and (2.8) be replaced by (3.24) 

atj-&!=ktj + he8 +dl tepepl,j + 4@Jj ,a$= W,j=he,j + d8tmllj + bc 

For l implicfty, 1st aa set b2 - 0, in this came tang account of the nonlinear terms is 
puticaluly necesuzy. Retsfnfng only terms of two orders, by using e P= e - Ah/At, Eq. 
(3.24) is sadly tranafonaed into 

(3.25) 

where& -8,=8t2fi/rj in thfa case. 
Ififth tke SIPLS two order accuracy, we have for the dfadpadon (T - conat) 

In concladfng tha !3actian, 1st ua aatfmata tha role of the nonbearity in the kinemlrdc 
nladonakip. Bar. wa mq limit onaaalf to tarma of three orders in the kinamatic raladen- 
skip, whila tka rwt of the ralodoaahipa ua conaidarad linear, the governing equationa nil1 
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A corn parieon of predictions of a model with complete kinematic nonlinsarlty and a mod- 
el with a “linearized” kinematic relationship will be made later in a simple shear flow exam- 
ple. We consider the medium incompressible, and all the remaining relation&pa linear (for 
example, fr,,* = 2jt8 ,,). 

Tbe problem of stationary ahear flow with shear velocity y l hence reduces to the solu- 
tion of the matrix Eqs. (see (1.11)) 

-$h-+=exp(-h)[e - ml exp (h) + exp @) [e + 01 exp (- h) 

(3.27) 

0=2tl $e+2p(l+$)h 

in tbe case under consideration the matrices e, o, h are 

In order to solve the firgt matrix equation for the matrix It, let us perform a similarity 
transformation such that the matrix h would reduce to the diagonal form 

q-‘hq = 

In the catsidered case h,, = 0, h&J = 2 (W + hay = 2a*,ir,piigv )iYb = 0 . Intro- 

ducing new unknowns a and 4 in place of ht t, At? by setting htt = a cos @ !r t2 = o sin 4, 
it is easy to see that the matrix q is hence an orthogonal rotation matrix 

Q = (;;;:;i; 
- sin ‘1% cp 

coxr/!a cp ) 

and the matrix equation reduces to two transcendental Eqs. 

2a = I’ (1 + k) sin p, 

sh 2a = (ch 2a f k) cos 9~ (3.28) 

Herer=r!?ty’sndk= bl/b, are nondimendon- 
al parameters. The parameter k is expressed in 

terms of the dimensional constants 9, F, 8,, r3z: 

(1 + k)r = 
&i*-S) 

The components of the elastic deformation and 
stress tensors may be expressed in terms of tbe 
psrameter (I as follows: 

h,, = 
a sh 2a 2as 

ch2a + k’ hB= l-‘(l+k) 

5u=.W(f+k) c;2tyk 

2 (3.29) 

The dependence of the parameter u on r and k 
is found from (3.28). 

Fig. 1 
The linearized kinematic relationship for tbe 

problem being solved is 

oh0 -h”o+h”/8~=(1+k)e 
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and in this case it is easy to write an explicit expression for a’, and hence, for no 

(1 + k) P 
o”=2vQq5 ’ q1O = P (f + V f- allo 

1+r’ ’ s,*o = -iT (3.30) 

Comparison of the ao~ution (3.29), (3.30) is 

made graphically. Pictured in Figs. 1-3 are do 

- qkk) -3”pP.j 
Fig. 3 

pcmdences of the nondimensional quantities I = 2a, /t = stz /p, f2 = all/p and the corres- 

ponding quantities x0, f to, fzo on the parameter r for several numerical values of the para- 

meter k. It is seen born the graphs that larger elastic deformations in the fluid correspond to 

larger values of the parameter k (for the same r); the functions ft and /to have one maxi- 

mnm each (in order for o,;(r) to b e m rnotonous here it is necessary that 8, > 8,/9), down 

to r- 1 the theory with the linearized kinematic relationship yields au error not exceeding 
101, however the error grows rapidly for large values of r. 

4. Model with many relaxation times: Vlscoelastic spectra. Let 

ua consider an element of fluid which consists of N subsystems. The elastic deformation of 

the k-th aubayatem is described by the tensor II(~) and the irreversible strain rate by epCk). 
The preceding malyaia can be extended to this more general case exactly as is done in 

linear viacoelaaticity [4 and 211. A sufficiently simple case ia considered below. We write 

the internal energy to the accuracy of cubic terms in h and the linearized kinematic relation- 

ship as 

PoU = p&o + x IL&(~) - . h(L) + 2 kklh(W. .hU.) . . y’, 

k Ii, 1 

Ah(“) 

7 + eFJ@) = e, hl = &kc h. .h = hia 

(4-l) 

bch expreriona ma 

ordinatea (we [4 and 
be obtained from the more general case by reduction to normal co- 

21 3 1. 
The expmaaion for eneopy production (T = conat) cm be written as 

TP,= o-_#) 
[ 1 ..e+~&)..eP(k) 

k k 

dk) = 2pkh(‘) + 2 A,, [2hWhW + h”,hU)] 
1 

H~co~o&, the dmple cue of a Maxwell type model ia considered when 

(4.3) 

(4.4) 
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Eqa. (4.2) and (4.5) may be solved for h(*) by using Jaumaun integration (Section 5 and 

[221) 

h$’ (1) = s’* exp ( - y-1 [e (i’)]U 

-a, 

Substitnting #&*I into the expression for a l (k)and taking account of (4.5) we obtain 

+j (1) =2 S**O (t - ~‘Pf~‘)lrj +2{* {* 9, (t - f’, t - t”) fe(f)tts [e (t”)]sj (4,6) 
--oo -Co --M 

We have haa introduced the notation 

In order to pass from the discrete to the continuous relaxation-time apectntm, ftis only 
necessary to replace the snmmation by integration, and the coefficienta pkr hlk by the opec- 

tral relaxation fuuctions p (8). X(8,, 8,) = X(t9,, 8,). 

Let us consider the behavior of such a model medium for simple kinds of flowa. 

Quasistationary Couette Flow Mode with Instantaneous Inclusion of tlte Strain Rate. In 
this case 

Here y ‘is a constant shear rate, H(t) the Heaviaide unit function, which equals zero for 
t<Oaad 1 fort>O. 

The matrizant t$(t, t’) which should satisfy Eq. 

-g cp (L 1’) = - wp (t, t’), cp (t’, t’) = I 

ia found easily to have the form 

‘cos 1:s r’ (t - t’) 

( 

- sin r/x 1’ (t - t’) 0’ 

rp (t, t’) = sin i/a r’ (t - t’) cosr/a~‘(t- L’) 0 
0 0 1 1 

and in a matrix of rotation throngb the angle !4y’(t - t’). 
The stress tenaor components (leas the preasute) may be cxpresaed In terms of the 

spectral function0 as follows: 

where we have introdaced the notation 
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u (I, 0) = I- cxp 
( 1 

- i (cos ~‘t - r-0 sin 7-t) 

~(r,8)=*-~xp(-~)(cos~.l+~si*i’L) 

It follows from (4.7) and (4.8) that both the normal and the tangential stresees have dmtt- 
ped oscillations upon emergace into the steady flow regime, The first maximum of the tab 
gendal stress is the largest and has the value: 

00 

’ mnx 513~ 
\ 

p (@) 
b 

it$ly.s [i+exp(--&-)]de 

Let us note that apparently such oscillations were observed experimentally in the poly- 

mer rheology laboratory of the Institute of Petrochemical Synthesis AN SSSR by C.V. Vino- 

gradov and A.Ia. Malkin. 

Formulas (4.7) md (4.8) simplify in the limit t + m 

The dependence of the effective viscosity q”(y’f = ~~2 (y’)/y’ agrees with the dynamic 

viscosity 7 ‘(cd) (determined in the linear theory of viscoelasticity) for y*+ w. The quan- 

tities o1 1 and crz2 in (4.9) are not equal, and are quadratic for small y’ as y’-+ 0. It is 

interesting to note that the anharmouic terms do not yield a contribution to the tangential 

stresses in simple one-dimensional flows of the considered medium. The difference !4b,t - 

- crz2f agrees with the real part of the dynamic modulus C’(o) as y’+ o.t. The agreement 

between v” and r~‘, % (ot t - oz2 ) and G’ has been discussed repeatedly in the rheological 

literature (see 119, 20 aud 231, for example). 

Let us consider yet another simple experiment on whose basis the functions or t(y’) and 

cr,,(y’) may be estimated. Let a viscoelastic fluid move stationarily in the narrow gap of a 

rotating cone-plane device customarily utilized for rheological investigations. Then, as is 

easy to show for this case, the tangential and normal stress distribution is (4.10) 

P,, = - P -t Qli fi), Pee = - P + ozs (r’). Prr = - P. Pep = %.J (r’). P,,= Pro ~2 0 

Here the quantities or,(y’) are defined in (4.9). From the equilibrium equations we have 
a simple equation for the distribution of the isotropic pressure over the radius of the device 

(the fact that the angular gap is small is used here) 

8P 
F &prr -p.+,-p*&=- cil’ ; bm 

Integrating this equation while taking into account that there is a free surface for r = R 
on which p,r = 0, we obtain 

P = hl + CJzd ln (R i 4 (4.11) 

Evaluating the axial pressure according to.(4.10) and (4.11), we find 
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R 

Q&n\ p,,rdr=-+P(%- *I 
. (4.12) 

According to [!Z& resalts of experiments show that bl 1 > up2 Pnd btt - 622, The lat. 
ter inequality corresponds to the constraint A(@,, 8,) > 0 on the binary relaxation function k 

Let us note yet another curious fact. The results of many normal stress tests (including 

those in [ 24]) convincingly show a logarithmic pressure distribution over the radius in the 
cone-plane device. These tests thereby (see (4.11)) show the inapplicability of rhsological 
models in which the two-dimensional tensor bit is a deviator in simple ahcar flow, for the 

description of normal stresses (such a situation arises particularly if snharmonic terms in 

(4.1) are neglected). 
‘Let us now examine steady flow with simple tension of a film of viscoelaatic fluid. 
Let there be the following velocity distribution in the liquid film (r is the motion direc- 

tion, y the transverse coordinate) 

vx=y 2, vu = y’ y (y’ = const) 

The strain rate tensor has the form 

fn this csse the vorticity tensor is evidently w = 0 and the mstrizant is #g, = 8tr. On the 

basis of (4.6) and (4.13) we have 

00 0003 

u = 2qe + Zve*, q= s s&,(t) dt, v= i 1 qr(t’, t”) dt’dt” (4.14) 

n 0 0 

FomuIa (4.14) shows that Trouton viscosity, defined by means of b,, , grows with in- 

creasing y’. which also corresponds qualitatively with experiment. 
Ry virtue of the evident approximate nature of the obtained equations, the description 

of the normal stresses, non-Newtonian viscosity, etc., by such governing equations aa in 
Sections 3 and 4, can claim only qualitative agreement with experiment although they are 
good enough for some materials (for instance, polymer solutions, see [19, 20, 23, and 24). 

Moreover, the viscoelasticity theory constructed in this Section is based on the relation- 
ships (4.1) and (4.2), which are constrained by sufficient smallness of the elastic deforms- 
tions. If the value of the mean elastic deformation is characterized by the parameter r = d), 

yb, where <I)> is some reiaxation time averaged over the spectrum, and yi is the characr 
teristic shear rate, then the domain of applicability of the constructed theory ia bounded by 

the inequality r < I. Since the values of G%- may be sufficiently large for polymer melts 
and concentrated solutions, the domain of applicability of the theory actually turns ont to 
be bounded by values of sufficiently small y’. Reversible ruptures in the structure, thixotro- 

py [25], may, in addition to the geometric nonlinearity noted above, give a substantial contri- 
bution to the phenomenon of the &cosity anomaly in viscoelastic media of the polymer melt 
type. Taking account of tbixotropic effects in viscoelastic media can be done within the 
framework of formal thermodynamics of irreversible processes by following the ideas of [ 251, 
however, this is outside the scope of the present paper. 

5. Appendix. On the JIUIUI~~O integral. Let X* be an arbitrary fixed coordfn- 

ate system; let &‘, B,* be some second rank tensors with mixed Indices obtained from the 

symmetric teusors A,, B,, by the operation of raising the index. Let tbs tensor 3,’ be 

given. Let us examine the equation in A:: 

Here 0,’ is the vorticity tensor, V, the operation of cavuiaut differentiation. Let us 

find the sobation of this equation for a given velocity vector Y’ = wf w, t) and some initial 



condition Aki = C,’ at t = to. Here CL (~“3 is some temor independent of the time t. 

Such a problem of inverting the Jaumann derivative (i.e., the problem of constructing the 
Jaumann integral) was considered schematically in [22]. 

The complete solution of (5.1) will be considerad here by using a generalization of the 
method in 1221 and the aoiution of an analogous problem in a frozen Lagrangean system of 
coordinates ek. Let us consider the solution of the problem in a fixed coordinate system. 

Introducing the notation 

where r’,’ is the Chriatoffel symbol, and the extensive O* = Ilo:j’ll coincides with o only 
in a Carteaian coordinate system (evidently, d*/dt is the nontensor time derivative), we 
write (5.1) in the matrix form 

AA d*A 
x,= T+o*A-A@+=B 

Let us examine the solution of the auxiliary matrix equation 

Following [IO], let ua introduce the “displacement function” z’~(x’, t, t’) which des- 
cribes the position of a continuum point with the fixed Lagrangean coordinate 5” at the time 
t’under the condition that the point occupied the position z&at time t. EvidentIy the dis- 
placement functions are solutions of the Caucby problem [IO] 

From (5.4) it is easy to note that 

$‘k 
(+ 

rl, f, f”) r= 2”k (zi, t, t”) 

An iterative solution of (5.3) is 

t t t 
6p (8. Q; z*j = z - a o)* (f, se*) cff + 

3 ss 
d (t’, ik) a* (t”, d) dt’dt# + . . . (5.5) 

0 b 20 

The quantity 4 is customarily called the matrizant of the matrix differential e uation. 
Let us note that according to (.5.5), 4 depends on xk only in terms of Q)*, where J is gener 
ally a nonsymmetric functional of 4) l . We shall henceforth omit the argument xk or the func- 
tional argument ot* in the notation for 4. 

The order of the variables t, t,, in the notation of the matrizant i$ is quite essential since 
t denotes current time, sad to is the lower limit of the integration in (S.S),corresponding to 
some reference point. The properties of the mat&ant 

Ip (k to) “p (to. t3 = B (tt tr), + (& to) cp (to, 2) = I (5.6) 

sre easily proved by using (5.5). 
From (5.3) and the second property of (5.6) we eanily deduce 

d”/dt q (to. t) = cp (to, t) o*, cp (to, lo) = I (5.7) 
The solution of (5.2) with the aid of # may be written as (221 

A = C + ’ qt (t, t’; ca’) B (f, x’) cp (t’, f; r*) dt’ E C + 
t 

s s 

* jB (r’); at*] (54 
l D 

In par&&r 
t 

Sp A = Sp C + Sp B (2’. z’) dt’, SpA=A; 
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It is intereating to note that despite the nontenaor nattue of the mat&ant 4 the desired 

quantity A in (5.8) ia of tenoor nature because of the tenaor nature of the Jaumaun deriva- 
tive and of the right aide B in (5.2). 

It is not difficult to show that the customuy integration by parts formula with the scalar 
function f(t) holds for the integral in (5.8): 

(5.9) 

Let us consider an example. Let it be required to fiid the tensor udr’, t) by meana of 

the known tensor e from Eq. 

(5.10) 

From (5.10) we have 

i ‘* 
(I=- 

81 s ( t-t’ 
e*p - - 01 1 P (01 

-02 

Substituting its value from (5.10) for the tensor B in this expression, and integrating 
while taking account of all the tensors vanishing as t + - 00, we obtain 

Now, let us consider the determination of the Jaumann derivative and the Jaumsnn inte- 
gral in a convective frozen coordinate system 4‘ k. 

nents of the symmetric tensor A in the system 4‘ 

Let a,, (tk, I) and u”([~, L) be compo- 

k. Let us introduce the three convective 

derivatives 

Daij 
b!” -_ - 
,‘I Dt ’ 

Here 31* is the moving Lagrange basis in the deformed space (Section 1). In general 
tensors B(k) are all distinct, which is associated with the fact that generally 

(W = _ 2c’k (5.11) 

are non zero. 
Here elk are the components of the strain rate tenaor with renpsct to the basis a* with 

the fundamental tensor glk(t). Let us note that the tensors B(t) and B(2) are symmetric, 

while the tensor B(3) is asymmetric. 

Now let us consider the symmetric tensor with mixed components 

b; = f (b(‘< + b(a<) = .+ g(l)ia (5.12) 

By virtue of (5.11) we may represent (5.12) in terms of components of the tensor A with 
a different arrangement of the indices 

i D%li 
b: = 2 + a:ed - ,$a: s r (5-W 

Dalk I D’aik 
bV = ~1 - etaak - aiaek = Dt 

Formulae (5.12) and (5.13) define the Jaumann derivative D’/Dt of the symmetric tensor 
A with respect to the convective baaia 3r ‘. Completely analogoaaly, the Janmann derivr 
tive of the nonaymmetric tenaor could be defined with respect to the buia ;h’. The fnndr 
mental properties of the Janmann derivative 
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are easily proved, 
Let no consider the question of inverting the operation of Jaumann differentiation in the 

convective coordinate system with baaia 31% Let us write the first equality in (5.13) in 
matrix (tenaor) notation 

Ll’a Da 
xEE+ea-ae=b (5.34) 

Let UII find the solution of (5.14). the tensor tt, which vanishes at time ro by assuming 

the tensora b and e known. 
Let us introduce the matrizaut $(t, to; P) = I\ $‘.i (t, to; p)II as the solution of E prob- 

lem with the initial data 

o\PIDt=-N, cp (to. 10: Fk) = I = I) sf; II (5.15) 

From (5.15) it is easy to see that $ is generally a nonsymmetric tensor. The iteration 
solution for JI is 

cp (1, lo; 4”) = I- 5 e (t’, ck) dt’ + [ dt’ [ e (l’, F,~) e (t”, Sk) dt”- . . . (5.16) 

13 to 1. 

Moreover, the tensor~atrizant $ possesses all the properties of the ordinary matrizant 
since the matrix Eq. (5.15) is a system of ordinary differential equations. In particular, the 
properties (5.6) are satisfied for $, where the equation for 1/1 (tc, t; p) is 

D I Dt QP (4 to; 4*) = rP (to, t; EK) e (4 C*), %.l?(lo, to; E*) = 1 

It follows from (5.16) that $ is a functional of e and depends on 5‘” onfy in te%s of t?; 
hence it is natural to write $(t, to; e). As above, it is easy to obtain the solution of (5.14) 
in the form 

1 t 

a = 
f 

rp(t, t’; e) b (E*, t’f 9 (t’, t; e) dt’r 
s 

* [b(f); e) (5.17) 

to to 

Another tensor $ ‘k.(t, to; e) could be introduced in place of the tensor $‘.‘k (t, to; e) 

however it is easy to see that 

$tp,i = 19:; IT 

The symbol 7’ here denotes transposition. 
Just u had been done above, it is easy to find the solution of the tensor equation 

I>‘a/Dt+ka=b, altzk=O 

(b is a given tensor, h a scalar constant) in the frozen tk coordinate system. The solution 
of this equation will be 

t 

f 

. 
a= exp (-3, (t- t’)) [b (t’); e] 

4 

Transforming in (5.17) from the 
f 

k coordinate system to the fixed x k coordinate system, 
according to the rules et up in [ 10 , we obtain 

Here Akr* B ’ k , l+h’.‘&, i?k’ are t8DsOr components in the fixed zk coordinate ayatem; the 
qumtitiem x’* uu displacement fnnctiona defined by the solution of the problem (5.4). 

The tensomatrirmt $p,‘(t, to, e) is defined by the expreaaion 



Kinemoiics oud thermod~umics in the &scary of uiscoefusticity a3 

In combinatidn with (5.41, Formulas (5.181 and (5.191 completely determine the solution of 
the problem (5.1) for C= 0; however, they are considerably more complex than Formulas 
(5.51 and (5.81 which were constructed on the basis of the nontensor mat&ant #ft, to, W* 1 

However, it is more preferable to use the very simple Formulas (5.161, (5.171 in the frozen 
coordinate system. Some connection evidently exists between the matrizants $.f’fr, ro; el 

and #r.i”(t, to; w* 1, but it will remain unclarified here. 
The authors are grateful to C.I. Barenblatt, V.M. Entov, R.L. Salganik and others for 

discussing the research. 
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